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ABSTRACT

The study of two-pion Bose–Einstein correlations provides a tool to extract both

spatial and dynamic information regarding the freeze–out configuration of the emis-

sion region created in heavy ion collisions. Noncentral heavy ion collisions are inher-

ently spatially and dynamically anisotropic. The study of such collisions through the

φ dependence of the HBT radii, R2
ij, relative to the event plane allows one to observe

the source from all angles, leading to a richer description of the interplay between

geometry and dynamics.

The initial heavy ion running of the Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory provided Au + Au collisions at 130GeV . The focus

of the heavy ion program at RHIC is the search for a new state of strongly interact-

ing matter, the quark gluon plasma (QGP). STAR is a large acceptance detector at

RHIC with azimuthal symmetry, allowing the study of a large variety of observables

on an event–by–event basis to provide a better characterization of the freeze–out con-

ditions. The detector geometry for the first year’s data consisted of a time projection

chamber (TPC) immersed in a 0.25T magnetic field oriented along the symmetry axis

to provide identification of particles with transverse momenta pT � 100MeV/c.

The focus of this dissertation is the study of the φ dependence of the transverse

HBT radii from π−π− & π+π+ correlations in non–central collisions. 2nd order oscilla-

tions are observed in all transverse radii (R2
o(φ), R2

s(φ), and R2
os(φ)). The oscillations
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are found to be consistent in phase and magnitude to both RQMD and hydrodynamic

predictions, yet both models (over)underpredict (R2
o)R

2
s whose relative size indicates

a short emission time–scale. A modified blast wave prameterization is successful at

reproducing a variety of observables at RHIC (i.e. particle spectra, v2(pT ), R2
ij(pT ),

and R2
o,s,os(φ)) with a univeral set of freeze–out parmeters. The results describe a

freeze–out geometry extended out–of–plane indicative of a short source life–time.
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CHAPTER 1

HEAVY ION PHYSICS

1.1 Introduction

In 1963 two Bell Labs scientists, Arno Penzias and Robert Wilson, discovered and

measured the cosmic microwave background radiation which resulted in the accep-

tance of the Big Bang model of the origin of the universe over competing theories

such as the steady state theory [13]. The discovery of this 2.7K remnant temper-

ature of the universe agreed with a prediction by Dicke of 3K. In the late 1980s a

new series of measurements such as COBE were begun to measure anisotropies in

the background radiation to probe further back, with better resolution, towards the

earliest moments after the Big Bang [14]. The Big Bang theory postulates that the

universe was created from the explosion of a point singularity of infinite density. The

subsequent expansion and cooling allowed the particle constituents to condense from

an initial soup of fermions, photons, quarks, and gluons to the present composition

of the universe where quarks and gluons are the composite particles of mesons and

baryons. Through the study of the structure of the microwave background radiation,

cosmologists are attempting to gain a better understanding of the conditions present

shortly after the creation of the universe.
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Figure 1.1: The phase diamgram for nuclear matter.

The study of relativistic heavy ion collisions is also allowing scientists to probe the

conditions of the early universe. Present theoretical understanding suggests the pres-

ence of a phase transition for nuclear matter in which the building blocks (quarks and

gluons) become asymptotically free from the strong nuclear force constraining their

movement within a nucleon. This phase is commonly referred to as a quark gluon

plasma, QGP. A quark gluon plasma constitutes a new state of matter and as such

requires thermalization to characterize the bulk properties of the system. The use

of heavy ions provides an extended system in collisions necessary to produce a large

volume of quark matter. A phase diagram for nuclear matter is shown in Fig. 1.1.

Trajectories in the temperature–baryon density plane predicted for both RHIC and

the LHC are also indicated. Modern lattice theory suggests that a temperature of
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∼ 2.3 × 108K is necessary to produce this phase transition for no net baryon den-

sity, µB = 0. The conditions necessary for this phase transition (high temperature

and/or high matter density) are thought to have existed shortly after the big bang,

(t ∼ 10−6s), and also in the cores of neutron stars. To create these conditions in a

laboratory setting requires the use of high energy collisions between very heavy nu-

clei. By compressing the matter within the collision, it is thought that dense regions

undergo a phase transition to a QGP and allow one to create and study conditions

present shortly after the big bang. The expected evolution of the nuclear matter in

heavy ion collisions is shown in Fig. 1.2. The two nuclei collide at approximately

the spped of light and enter along the light cone trajectories. The pre–equilibrium

that immediately follows describes the matter prior to thermalization. At sufficient

energy density, a QGP is then formed which cools and re–hadronizes during the

mixed phase. This mixed phase fully hadronizes and subsequently freezes out to free

streaming particles.

Evidence confirming a phase transition is expected to come from a variety of

measurements. The STAR detector was designed to correlate a variety of observables

on an event–by–event basis. In this way, the STAR experiment is well positioned to

provide evidence confirming the existence of a QGP. Of most relevance to this thesis

is the prediction of a rapid increase in the emission life time of the particle source

should a QGP form. Within a hadronic gas, one has (n2
f−1) degrees of freedom (DOF)

where T ∼ 0. When matter undergoes a phase transition to a QGP, the number of

DOF increase to (16 + 21
2
nf ) [1]. Here, nf represents the number of quark flavors.

As the fireball cools, this difference in the number of DOF lengthens the time for

the nuclear matter to hadronize as the quarks must realign themselves inside hadrons
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Figure 1.2: Theoretical evolution of a heavy ion collisions.

before freeze–out. Particle interferometry measures the spacetime structure of the

emission region and thereby provides information regarding the emission timescale.

A large increase in the timescale of particle emission was suggested by Pratt, Csörgő,

and Zimányi as an indicator of a phase transition to a QGP [15]. Gyulassy and

Rischke have shown that a phase transition induces in hydrodynamic calculations a

strong increase in emission timescale and that this increase is generic, independent of

implementation details [16] As discussed in the next chapter, an observable sensitive

to this timescale is the ratio of two “HBT radii” Ro/Rs. Fig. 1.3 shows the ratio

Ro/Rs, a measure of emission timescale, from a hydrodynamic simulation with and

without a phase transition to QGP, showing an increase when one includes a phase

transition. As discussed in Chapter 2, the present colliding energy dependence of this
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Figure 1.3: The ratio of Ro to Rs for a hydrodynamic simulation. The upper curves
represent a simulation with a QGP phase transition while the lower curves correspond
to an ideal gas expansion [1].

out–side ratio does not display a clear signal of QGP formation. The inclusion of a

RQMD after–burner increases the emission time and makes comparison between data

and theory even less consistent.

While the Ro/Rs ratio as a signature of QGP formation focuses on results from

central heavy ion collisions, QGP formation was also predicted in non–central events.

An analysis of non–central collisions with a hydrodynamic model by Teaney and

Shuryak indicated the presence of a “nutlike” matter distribution with a crescent

shaped emission regions at RHIC energies [17]. While oddly shaped emission region

are invisible to standard HBT correlation analyses, which average the source shape
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Figure 1.4: The mean spatial anisotropy s′2 as a function of particle mass with and
without the RQMD hadronic after–burner [2].

over azimuthal dependencies, the study of the source geometry relative to the emission

angle can resolve finer detail in the space time structure of the emission region. Fig. 1.4

shows the spatial anisotropy parameter s′2 for various particle masses. This parameter

characterizes the average freeze–out geometry of the emission region and shows a

clear change in the source shape when one considers only a hydrodynamic source

(open squares) to a hydrodynamic source with a later stage RQMD hadronic after–

burner. The pions in particular show a drastic change in the s′2 parameter from a

out–of–plane ellipse, s′2 < 0, from hydrodynamics to an in–plane extended source with

Hydrodynamics+RQMD. A study of the φ dependence of the HBT radii provides the

information necessary to determine which model scenario better describes the heavy

ion collisions at RHIC.
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1.2 Organization

The data presented here are taken from the initial heavy ion run from the Rela-

tivistic Heavy Ion Collider (RHIC) using Au + Au collisions at
√

sNN = 130AGeV

as measured with the Solonoidal Tracker At RHIC (STAR) detector. The focus of

Chapter 2 will be to present background information and development of HBT inter-

ferometry and discuss previous measurements. Chapter 3 presents an overview of the

RHIC accelerator complex and the STAR detector in addition to a brief description

of the event reconstruction. This thesis will focus on measuring pion correlations

through HBT interferometry measurements relative to the event plane to extract the

φ dependence of the HBT radii. The study of the φ dependence of the source radii is a

novel analysis technique for corrrelation data that requires additional machinery from

the standard azimuthally integrated analysis. Chapter 4 focuses on the development

of these tools within the STAR data model. In addition, experimental interferometric

issues such as track splitting and track–pair merging and the systematic behaviors

they introduce to correlation data are discussed along with procedures developed to

correct for them. Chapter 5 will be devoted to presenting the analysis results and to

interpret and discuss the implications of the measurements. The measurements will

be interpreted in relation to a hydrodynamic parametrization of the emission region

and qualitative comparisons to hydrodynamic and molecular dynamic models will be

included.

1.3 Author’s Contribution

The STAR collaboration is made of up over 400 scientists who, over the past

10 years, have designed, fabricated, and operated the STAR detector to collect and
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analyze data from the RHIC collider. The development and testing of analysis and

reconstruction software was a primary concern and this is where my conributions

were focused. Specific contributions varied from writing software and applying it to

analyze changes in performance in event reconstruction codes to serving as a pri-

mary developer of the HBT analysis infrastrucutre. The inital HBT analysis software

(StRandyHbtMaker) was used to perform the first STAR–specific HBT analysis to

simulation data. This analysis software gave way to a better design in the modular

StHbtMaker. One of these modules was written to correct for Coulomb interactions,

StHbtCoulomb. This software was used to search a table of correction values and is

vital to HBT all HBT analyses. Reconstruction inefficiencies such as track splitting

have a large effect on correlation data. A topological method to characterize the

amount of track splitting in STAR and to correct the data was developed and tested

in early simulation tests of the analysis software. The success of this topological “cut”

lead to its propagation to non–HBT analysis groups such as strangeness. Further,

theoretical model HBT studies were carried out in Relativistic Quantum Molecular

Dynamics (RQMD), who’s results will be compared in this thesis.
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CHAPTER 2

OVERVIEW OF MULTIPARTICLE INTERFEROMETRY

In the early 1950’s, astronomers were using a technique called interference or

Michelson interferometry to measure the angular size of stellar objects. This method

took advantage of the phase information of the photons detected and the interfer-

ence which occurred due to path length differences between the waves to extract size

information. At this time interference interferometry was reaching a critical point.

The techniques used require phase information to be compared between the two de-

tectors and distortions introduces by atmospheric scattering reduced the effectiveness

of the technique. In the late 1950’s a pair of scientists, Robert Hanbury–Brown and

Richard Twiss, developed the idea of intensity interferometry into a valid alternative

to Michelson interferometry [18]. This new method differs from Michelson interfer-

ometry in that it uses the quantum correlations to resolve space–time information

about the particle source by comparing the two particle coincidence rate P2 to the

product of one particle coincidence rates P1

SIGNAL → P2(|1〉, |2〉)
P1(|1〉)P1(|2〉) . (2.1)

Due to their pioneering work the technique of intensity interferometry is commonly

referred to as Hanbury–Brown and Twiss interferometry or HBT.
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In the 1960’s a similar snenario was introduced by Goldhaber, Goldhaber, Lee, and

Pais (GGLP) to explain the angular distributions of π+ π+ and π− π− pairs emitted

from p–p annihilations [19]. They found the 2–particle probability was higher for like–

sign pion detection at small angle relative to the opposite sign case. While initially

this was a puzzle, in this paper, they used symmetrized plane waves to represent the

emitted particles to calculate the two particle momentum probability

P2(�p1, �p2) ≈ 1 + exp (−s2), s =
∣∣�p1 − �p2

∣∣λ 1
2 (2.2)

when a Gaussian source was assumed. Here, λ is a measure of the size of the particle

source λ = ρ2/4.63 and �pi is the momentum of particle i. Assuming ρ = 0.75�/µc

they were able to obtain good agreement between the predicted angular distribution

and that which was measured. The successes of Goldhaber lead to the widespread

use of HBT to study the spacetime structure of nuclear matter over the past decades.

In nuclear or particle physics, then, one often refers to the GGLP effect. At the same

time, technological developments lead to Michelson interferometry continuing to play

a strong role in astronomy.

The importance of interferometry measurements can be seen in the wealth of

information it can provide about the particle emitting source. In this chapter, I will

describe how, in addition to being an effective method to obtain 3–dimensional source

geometries, interferometry also provides information about the evolution timescale,

the emission duration of the source, and source dynamics such as collective flow. With

the increased energies available at present and future colliders (RHIC and LHC) the

particle multiplicities will be such that interferometry analyses will be done using

a variety of particles including some neutral particles such as Λ and K0 which will

provide information about strangeness production in heavy on collisions [20].
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2.1 Basic Interferometry

In the most basic example of intensity interferometry, one considers the case of a

pair of free–streaming particles emitted from two points R1,2, at positions �r1 and �r2,

within some generalized source and then observed by a pair of detectors D1,2, at posi-

tions �r′1 and �r′2, with momenta �p1 and �p2, as seen in Fig. 2.1. Planar wave functions are

used to represent the emitted particles and must be symmetrized (antisymmetrized)

according to the bose (fermi) statistics present

Ψ = u(�r1, �p1) u(�r2, �p2) ei�p1·(�r′1−�r1)ei�p2·(�r′2−�r2) ± u(�r2, �p1) u(�r1, �p2) ei�p1·(�r′1−�r2)ei�p2·(�r′2−�r1).

(2.3)

Here, u(�ri, �pj) is the source function for emitting a particle of momentum �pj from

point �ri. Assuming the emission function has a smooth momentum dependence, the

smoothness approximation, the source functions become functions of the emission

position, �r, and the total pair momentum, �K = (�p1 + �p2)/2 [21]

u(�x, �p1)u(�y, �p2) = u(�x, �K +
1

2
�q)u(�y, �K − 1

2
�q) = u(�x, �K)u(�y, �K), (2.4)

where �q = �p1 − �p2 is the relative momentum. This gives a two–particle probability

∣∣Ψ∣∣2 = |u(�r1, �K)|2|u(�r2, �K)|2 (1 ± cos(�q · ∆�r)), (2.5)

where ∆�r is the vector between emission points. Normalizing (2.5) by the single

particle probabilities, |u(�r, �K)|2, gives the 2–particle correlation function

C2(�p1, �p2) = 1 ± cos(�q · �r). (2.6)

In equations (2.3,2.5, and 2.6), the +(−) correspond to the case of Boson (Fermion)

correlations. From (2.6), we see a relation betwen the measured momentum difference
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Figure 2.1: Symmetrization of the pion wavefunctions.

�q and the spatial separation of the emission points of the two particles �r. The above

example considers only the symmetrization of a pair of particles.

2.1.1 Continuous Emission Region

Realistically one must consider a more complicated collection of emitted particles.

The quantum state |φf〉 describing the particles emitted from the particle source can

be written [22] as

|φf〉 = e−n̄/2 exp

(
i

∫
d3k J(�p)a†(�p)

)
|0〉, (2.7)

where J(�p) is the Fourier transform of the current operator from the pion Klein–

Gordon equation, (� + m2
π)φ(x) = J(x), and a† is the creation operator. The state
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|φf〉 has the property that it is an eigenstate of the annihilation operator[23]

ap|φf〉 = i

∫
d4x

eip·x√
2Ep(2π)3

J(x) |φf〉. (2.8)

Using the creation and annihilation operators, the single particle production prob-

ability for state |φf〉 can be expressed as

P1(p) = Ep
dN

d3p
= Ep〈φf |a†

pap|φf〉 (2.9)

and the pair production probability is given by

P2(p, q) = EpEq
dN

d3p d3q
= EpEq〈φf |a†

pa
†
qaqap|φf〉. (2.10)

There are two limits to consider for the emission of particle pairs from the source,

coherent or chaotic emission. The planar wave functions used to desribe the emit-

ted particles each have a creation phase associated with them. If these phases are

identical, the particles are described as coherent. If these phase are uncorrelated, the

source is termed chaotic. In the case of a coherent source, (2.10) simplifies to

P (p, q) = EpEq〈φf |a†
pap|φf〉 〈φf |a†

qaq|φf〉, (2.11)

resulting in a constant correlation function C(�p1, �p2) = 1. In this case there is no

correlation between the emitted particles. If one assumes chaotic particle emission,

the expectation in (2.10) can be expanded through the use of the Wick theorem [24]

to

〈φf |a†
pa

†
qaqap|φf〉 = 〈φf |a†

pap|φf〉〈φf |a†
qaq|φf〉 + 〈φf |a†

paq|φf〉〈φf |a†
qap|φf〉. (2.12)

This can be interpreted as the sum of probabilities of particles being emitted from two

points within the source with the interchange probabilities. Using (2.8) and (2.12),
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the pair production probability can be expressed as[23]

〈φf |a†
pa

†
qaqap|φf〉 =

∫
d4r d4r′ S(r, p)S(r′, q)

±
∫

d4r d4r′ S(r,
p + q

2
)S(r′,

p + q

2
)eip·re−iq·r′

=

∫
d4r d4r′ S(r, p)S(r′, q)

±
∣∣∣ ∫

d4r S(r,
p + q

2
)ei(p−q)·r

∣∣∣2 (2.13)

Here, S(r, p) is the phase space density function and represents the probability of

producing a particle with momentum p at a space–time point r. Using this, the

correlation function can be expressed as[23]

C(�p1, �p2) = 1 ±

∣∣∣ ∫
d4r S(r, �K)eiq·r

∣∣∣2∫
d4r S(r, �p1)

∫
d4r′ S(r′, �p2)

, (2.14)

a function of the total pair momentum, �K = (�p1 + �p2)/2, and the pair relative

momentum, q = (p1 − p2). The numerator is seen to be the Fourier transform of

S(q, �K), the source function of particles with relative momentum q.

The dependence of the correlation function on the total pair momentum introduces

a relationship between the dynamics of the particle source (i.e. space–momentum

correlations) and the measured size. A study of the �K dependence of the HBT source

parameters can be used to obtain information about the dynamics of the emission

region. It should be noted that the source parameters returned from an HBT analysis

do not provide the actual source dimensions, but provide information regarding the

size of the source producing particle pairs within a portion of momentum phase space.

The expression in italics is often called a “region of homogeneity” [25].
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2.1.2 Lengths of Homogeneity

By using a saddle point method, the phase space density function was shown to

be approximated by[26]

S(x,K) � S(x̄,K) exp [−1

2
(x − x̄)µ(x − x̄)ν Bµν(K)]. (2.15)

where x̄µ = 〈xµ〉 is the saddle point, equal to the average emission point of particle

pairs with total momentum K. The saddle point approximation provides a relation

between the symmetric curvature tensor, Bµν , and the expectation values of xµ

(B−1)µν = 〈xµxν〉 − 〈xµ〉〈xν〉 = 〈x̃µx̃nu〉. (2.16)

The diagonal terms (B−1)µµ of the curvature tensor are seen to be “lengths of ho-

mogeneity” and provide a measure of the size of the source of particle pairs with

momentum K. Inserting (2.15) to (2.14) one can calculate the expression for the

correlation function from a Gaussian particle source,[26]

C(�q, �K) = 1 ± exp [−qµqνR2
µν ]. (2.17)

Here, R2
µν has replaced the curvature tensor and are referred to as the source radii.

These radii are not measures of the geometric size of the whole source; they represent

the size of regions in which particles similar in momentum phase space are emitted.

While the diagonal terms measure these regions of homogeneity, the off–diagonal

terms indicate the presence of tilts, or momentum correlations, in the correlation

function. These terms can have both positive and negative signs distiguishing negative

and positive tilts [27]. Equation (2.17) is the chaotic expectation from a Gaussian

phase space density function. In general, the emission of particles is neither perfectly

chaotic nor truly coherent. In addition, correlation functions are effected by pions
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emanating from strong decays (i.e. σ, ρ, and ω) and misidentified particles. The

presence of pions originating from particle decays introduce a shadow source with a

size determined by the lifetime of the parent particle. Pions entering the analysis from

misidentified particles such as a kaon introduce totally uncorrelated pairs. These 3

effects reduce the intercept point C(0) of the correlation function. A λ parameter is

then included within the correlation function to account for this

C(q,K) = 1 ± λ exp [−qµqνR2
µν ]. (2.18)

This also represents the functional form of the correlation function used to fit to

experimental data.

2.1.3 Final State Interactions

In the above development of interferometry it was assumed that the outgoing par-

ticles are free–streaming and can be described by non–interacting plane waves. This

is not the case for the emitted particles which are affected by a series of interactions

including Coulomb effects from both the remnant source and other emitted particles

as well as the strong nuclear force.

Strong Interaction

The strong nuclear force is an interaction between quarks whose residual effects

are responsible for binding nucleons (neutrons and protons) in the nuclei of atoms

where it overwhelms the electromagnetic interactions. All hadrons experience strong

interactions on a small distance scale. The estimated range of interaction for the

strong nuclear force between pions is about 0.2 fm [28]. The typical size of the

emission region in Au + Au collisions in several fermi and so the typical separation

16



between emission points for pion pairs is much larger then the relevant scale for the

strong interaction. For this reason effects due to the strong interaction will be ingored

in this analysis.

Coulomb Interaction

All charged particles interact electromagnetically via the Coulomb force which is

attractive for opposite signed charges while repulsive for like signed particles. There

are two Coulomb forces present for the emitted particles. The emitted particles

interact with each other as they emerge from the emission region. In addition, the

positively charged remnant particle source introduces Coulomb interactions between

the emitted particles and the source itself.

To account for the interaction between emitted particles, one factorizes the particle

pair wavefunction into a center of mass term and a relative part:[29]

Ψ12(�p1, �x1, �p2, �x2) = exp [i(�p1 + �p2) · (�x1 + �x2)/2] × φr(�p1 − �p2, �x1 − �x2). (2.19)

The wave equation of scattering solutions for a pure Coulomb potential are given

by[29, 30]

φc(�k, �r) = e
πγ
2 Γ(1 + iγ)eikzF [−iγ; 1; i(kr − i�k · �r)] (2.20)

with symmetrized solution given by

φr(�k, �r) =
1

2
(φc(�k, �r) + φc(�k,−�r)). (2.21)

Here,

�v = relative velocity

�k =
m

�
�v (2.22)

γ =
ZZ ′e2

�|�v| .
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Combining equations (2.19) and (2.21) and integrating into the pair production prob-

ability (2.10) one obtains the Coulomb corrected two particle probability distribution.

This is then integrated to obtain the correction factor for the Coulomb interaction be-

tween emitted particles. Experimental considerations about the Coulomb correction

will be discussed in Chapter 4.

In addition to the attraction(repulsion) felt by the emitted particles from interac-

tions with each other there is a potentially large Coulomb potential from the positively

charged source. The effects on the pion correlation function was found to be very

small and decreases as the collisions energy becomes ultrarelativistic [31, 32]. One

would intuitively recognize that the central potential would have a similar effect on

the entire momentum spectrum thereby reducing any changes that would be mea-

sured in the relative momentum distributions. In addition the relativistic speeds at

which pions are emitted from the source greatly reduces the amount of time for the

central Coulomb potential to effect the momentum distribution. We do not apply

any correction to the data due to the central Coulomb potential, in accordance with

standard practice.

2.1.4 Coordinate Parameterizations

Up to now the interferometry discussion has been presented in the full 6-dimensional

phase–space defined by the components of the momenta of the two particle distribu-

tions. To extract information from the experimentally determined correlation fuction

one must choose a coordinate system in which to work. The coordinate system used

generally depends on the geometry of the detector used as well as the amount of
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statistics available for the analysis. In addition one must consider the frame of ref-

erence used in previous measurements to allow comparisons and extend systematic

studies.

qinv Parametrization

The standard parametrization for the correlation function is of a Gaussian form.

A simple form of the correlation function is called the q–invariant, qinv =
√

q2 − q2
o ,

parametrization which compresses all of the spatial and temporal information into a

single Gaussian parameter, Rinv. In this case the correlation function is given by

C(�q, �K) = 1 + λ( �K) exp [−q2
invR

2
inv(

�K)]. (2.23)

This 1–dimensional parametrization is valuable from the experimental standpoint

in that it allows the use of lower statistics data than other multi–dimensional analyses.

This allows the experimentalist to perform interferometry analyses in experiments at

lower energies where the particle multiplicty drops or where the detector acceptance

reduces the number of measured particles. In addition the q–invariant parametriza-

tion allows one to perform HBT analyses to additional event classes such as “rare”

events found at higher energies. Fig. 2.2(a) shows the result of a qinv analysis of

the 130AGeV STAR data [3]. While such a simple parametrization of the correlation

function brings flexibility to the experimentalist, the process of combining the spaital–

temporal information into a single parameter makes the interpretation of the result

more difficult; the radius extracted through a q–invariant analysis does not represent

a physical extension of the system. By expanding the number of dimensions one can

study not only the geometric size but also properties of the evolution of the paricle

emitting source.
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Figure 2.2: 1D (qinv) histogram and 1D projections of Pratt–Bertsch parameterization
correlation functions for

√
sNN = 130GeV Au + Au collisions. Shown are histograms

for both uncorrected (open circles) and Coulomb corrected (closed circles) with Gaus-
sian source fits to the corrected data (lines) [3].

20



T

p
1

p

Ql

Q12

2 Beam axis

Q

Beam out of figure
2

p
p

Q sQo

1

KT

Figure 2.3: Pratt-Bertsch decomposition of the momenta to a longitudinal ql and
transverse qT components (left figure) and the decomposition to outward qo and side-
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Pratt–Bertsch Parametrization

With increasing statistics, a 3–dimensional analysis allows the extraction of addi-

tional information about the source geometry and dynamics of the emission region. A

commonly used parameterization is the Pratt–Bertsch or Cartesian parameterization

[29, 33]. This reference frame is spanned by three vectors referred to as the outward,

sideward, and longitudinal axes. These axes are determined by the beam direction

and the pair transverse momentum, �KT = (�p1 +�p2)T /2. The longitudinal or long axis

is taken to be parallel to the beam direction, while the outward and sideward axes are

components of the pair transverse momentum. The outward or “out” axis is defined

to be parallel to the transverse momentum while the sideward axis is perpendicular

to both the long and out axes, q = (qo, qs, ql). The Pratt–Bertsch axes are shown in

Fig. 2.3 for an example pair.
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Expressing (2.18) in terms of the Bertsch–Pratt momenta gives

C(�q, �K) = 1 ± λ exp (
∑

i,j=o,s,l

−qiqjR
2
i,j). (2.24)

By using the mass–shell constraint,

q0 = �β · �q, �β = �K/K (2.25)

where �β = (βT , 0, βl) is the pair velocity, the explicit time dependence of the corre-

lation function drops out. An implicit time dependence remains in the outward and

longitudinal components of the HBT radii

R2
o = 〈(x̃o − βT t̃)2〉, (2.26)

R2
l = 〈(x̃l − βlt̃)

2〉, and (2.27)

R2
s = 〈x̃s

2〉. (2.28)

Additional terms (R2
os, R2

ol, and R2
sl) are also present in the full expansion of (2.24).

If cylindrical source symmetry is assumed, the out–side and side–long components

cancel due to symmetry and at midrapidity, the out–long component also vanishes.

In standard practice, the form of the correlation function which is fit to data is

C(�q,�k) = 1 ± λe−q2
oR2

o−q2
sR2

s−q2
l R2

l . (2.29)

Fig. 2.2(b,c,d) show the projections of the correlation function of an azimuthally

integrated Pratt–Bertsch analysis of the 130AGeV STAR data [3]. The effects of

the Coulomb suppression at low–q can be seen by comparing the raw data (open

diamonds) to the Coulomb corrected result (closed stars). Projections of a fit to

(2.29) is also included.
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duration.

Equations (2.26–2.28) show the dependence of the lengths of homogeneity on

the particle emission time–scale also seen in Fig. 2.4. In particular, the absence of

time dependence in the sideward radius when compared to the outward radius allows

an estimation of the emission time-scale when all correlations (space–time, space–

momentum) are ignored. It is expected that with a phase transition to a QGP, the

emission time–scale will increase providing a signal in 3–dimensional Pratt–Bersch

analyses. Fig. 2.5 shows a compendium of HBT radii measured in various experiments

for a series of colliding energies. In Fig. 1.3, a signal for a phase transition was

expected to be visible in the comparison of the outward and sideward radii. While

not definitive, Fig. 2.5 suggests that this energy range provides no evidence for the
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presence of a phase transition. The large collision energy gap present between the

SPS (∼ 20GeV ) and RHIC (∼ 200GeV ) will be filled in by future runs of RHIC.

2.2 Experimental HBT Procedure

The experimental correlation function is formed through the creation of two his-

tograms, referred to as the numerator and denominator. The numerator is formed

from particle pairs in the same event and represents the distribution of the two–

particle probabilities for a quantity. In the case of HBT interferometry, the distri-

bution is the relative momentum. These pairs are typically called “real” pairs. The

denominator is formed by mixing particles in separate events. In this way, there are

no physical interactions between the pairs which are simply called “mixed” pairs and

represent the single particle probabilities. The denominator for each event is formed

by mixing each particle in that event with all of the particles in a collection of events

called a “mixing buffer” which typically consists of ∼ 5 events. It is implied that the

particles which are used to form these histograms have passed some criteria to select

for only pions. The correlation function is then the ratio of the numerator histogram

divided by the denominator

C(�q) =
N(�q)

D(�q)
. (2.30)

This experimental correlation function is then used to fit to Eq. (2.17).

2.3 Azimuthally sensitive particle interferomery

Noncentral collisions are characterized by an almond shaped (ellipsoidal) geometry

built from the overlap sections of the participant nuclei which then evolves to some

average freeze–out geometry. This freeze–out geometry is what is measured through
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Figure 2.5: The energy dependence of midrapidity π− HBT radii from central Au +
Au or Pb + Pb collisions at pT ∼ 0.17GeV/c [4, 5, 6, 7].
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interferometric studies. The study of particle interferometry relative to the event

plane allows one to resolve changes in the shape of the source as one observes from

different angles. Thus, it will measure the change in the transverse source shape

and can discriminate between a source which has retained its initial configuration

(extended out–of–plane) to one which has evolved to cylindrical or even one extended

in–plane. The study of interferometry relative to the event plane thus studies the

freeze–out configuration of such an input geometry and provides information about

the source evolution. Fig. 2.6 shows the overlap region created in a noncentral collision

in addition to indicating the direction of the impact parameter,�b. The input geometry

can be characterized by an in–plane extension which is substantially smaller than

the out–of–plane extension. If the system retains any anisotropy upon freeze–out,

the assumption of a cylindrical emission region would be an oversimplication. This

assumption is at the heart of azimuthally integrated analyses, which is almost all of

what has been studied so far.

2.3.1 Analyzing non–central collisions

Noncentral collisions are inherently both spatially and dynamically anisotropic.

The standard HBT analysis which integrates the collision data over event plane angles

does not take into account the changes in the source characteristics as one observes

the source from various angles relative to the event plane. To take into account the

changes in the relative source geometry as one measures from different angles the

source extensions or homogeneity lengths must be rotated[21]

R2
ij = 〈[(Fφx̃)i − (Fφβ)it̃][(Fφx̃)j − (Fφβ)j t̃]〉. (2.31)
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Here, Fφ is a rotation matrix, with φ indicating the angle between the impact pa-

rameter and the angle of emission of the particle pair, and Fφβ = (βT , 0, βl). The

homogeneity lengths are given in the source fixed frame so that x̃ represents the

source extension along �b. This provides a relation between the HBT radii, Rij, and

the source extensions in the source fixed frame,[34]

R2
o(KT , φ, y) = S11 sin2(φ) + S22 cos2(φ) + S12 sin(2φ) −

− 2βT S01 cos(φ) − 2βT S02 sin(φ) + β2
T S00,

R2
s(KT , φ, y) = S11 sin2(φ) + S22 cos2(φ) − S12 sin(2φ),

R2
l (KT , φ, y) = S33 − 2βlS03 + β2

l S00,

R2
os(KT , φ, y) = S12 cos2(2φ) +

1

2
(S22 − S11) sin(2φ) + (2.32)

+ βT S01 sin(φ) − βT S02 cos(φ),

R2
ol(KT , φ, y) = (S13 − βlS01) cos(φ) − βT S03 +

+ (S23 − βlS02) sin(φ) + βlβT S00,

R2
sl(KT , φ, y) = (S23 − βlS02) cos(φ) − (S13 − βlS01) sin(φ).

Here, Sµν is called the spatial correlation tensor and represents the source extensions

in the impact–parameter fixed frame

Sµν =




t̃2 t̃x̃ t̃ỹ t̃z̃
x̃t̃ x̃2 x̃ỹ x̃z̃
ỹt̃ ỹx̃ ỹ2 ỹz̃
z̃t̃ z̃x̃ z̃ỹ z̃2


 . (2.33)

In addition to the explicit φ dependence introduced through the rotation matrix,

the Sij components also contain emission angle dependence from contributions from

collective motion, radial and elliptic flow, present in the source.

The measured oscillations with respect to φ are also affected by the opacity of the

source. Heiselberg and Levy determined the dependence of the transverse radii for
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both a transparent and opaque source[35]

R2
s = gsR

2[1 + δ cos(2φ)] (2.34)

R2
o = goR

2[1 − δ cos(2φ)] + β2δτ 2 (2.35)

R2
os = gosR

2δ sin(2φ)] (2.36)

Here, R2 = (R2
x + R2

y)/2 is the average radius of the source, δ = b/2Ra measures the

overlap region, and go,s,os are model dependent factors characterizing the opacity of

the source. go,s,os = 1 when the source is transparent and decrease with increasing

opacity. In all cases gos � gs and go < gs. The magnitude of the oscillations become

equal only in the case of a fully transparent source.

Transverse flow also modifies the transverse HBT radii. In [35, 36], a transverse

flow gradient was included in calculations that showed a decrease in the measured

radii by a factor ∼ (1 + u2
omT /T ), where uo is a flow scaling factor. A similar effect

is seen in various dynamical models.

The development of studying the transverse source shape using φ dependent HBT

interferometry has been paralleled by a simlar development is astronomy. Recently

interferometric measurements were used to measure the degree of oblateness for the

A7IV − V star Altair [37].

2.3.2 Determination of the event plane

The angle φ in the previous equations is defined relative to the impact parameter

or the event plane. The impact parameter is used to describe the distance between

the centers of the particles in a collision. A noncentral collision is characterized by

nonzero values of the impact parameter. In such collisions, the geometry of the overlap
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region of the two colliding nuclei is non-cylindrical. The pressure gradients are thus

different from the in–plane and out–of–plane axes. The difference in the pressure

gradients (and surface geometry) cause a greater flow of particles and energy to be

emitted along the impact parameter, “in” the event plane. This “number” or energy

flow anisotropy is then used in the calculation of the event plane.

The calculation of the event plane in heavy ion collisions is done through an anal-

ysis of the distribution of freeze–out momenta, the momenta when particles are free–

streaming from the emission region. At lower energies, the flow angle is sufficiently

large that a determination of the event plane can be made through the formation of

the full sphericity tensor[38]

Sij =
M∑

ν=1

w(ν)pi(ν)pj(ν). (2.37)

Here, pi(ν) is the ith component of the νth particle and w(ν) is a weighting associated

with that particle. This particle weighting is typically taken such that the sphericity

tensor is a measure of the total kinetic energy from the outgoing particles. The matrix

has three eigenvalues, fi, with three eigenvectors, êi. The symmetry associated with

collisions of equal mass nuclei, as is the case with Au + Au collsions, requires one

eigenvector to point out of the event plane, perpendicular to both impact parameter

and beam directions. This eigenvector then allows one to determine the event plane.

At higher collision energies, the amount of longitudinal momentum present reduces

the flow angle and the relative magnitude of the transverse eigenvalues from the

sphericity tensor [39]. Ollitrault shows that a transverse sphericity tensor, continues

to allow the calculation of the event plane [40]. This method was used to determine

the event plane for azimuthally sensitive analyses in E895 to extract flow values as

well as HBT parameters [41, 42, 8].
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A generalized formalism for determining the nth order event plane was proposed

by Poskanzer and Voloshin [39]. This method couples the calculation of the event

plane with the flow coefficients. These coefficients represent a Fourier expansion of

the momentum distribution:

E
dN3

d3p
=

1

2π

d2N

ptdptdy

(
1 +

∞∑
n=1

2vn cos[n(φ − Ψr)]

)
. (2.38)

The reaction plane is then determined through a set of equations[39]

Qn cos(nΨn) =
∑

i

wi cos(nφi), (2.39)

Qn sin(nΨn) =
∑

i

wi sin(nφi), and (2.40)

Ψn = tan−1

(∑
i wi sin(nφi)∑
i wi cos(nφi)

)
/n. (2.41)

One may then calculate the flow vector Qn and the event plane angle Ψn of order n.

One can show the equivalence of this method for n = 2 and the sphericity tensor [39].

Experimental issues such as acceptance corrections and event plane resolution will be

discussed in Chapter 4.

2.3.3 Previous measurements

While essentially all HBT analyses have implicitly assumed azimuthally symmetric

emission regions (valid in principle only for b = 0 collisions, which occur with vanish-

ing probability), interferometry relative to the event plane has been studied previously

at the AGS by experiments E877 and E895 [43, 8]. While the E877 mesaurement pre-

sented a general source size in–plane versus out–of–plane, the E895 measurement

increased the number of fit parameters by using the full experimental correlation

function including cross–terms in the radii. E895 not only measured the eccentricity
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Figure 2.7: Pion interferometry results of φ dependent HBT radii for AGS experiment
E895 using Au + Au beam–target collisions at 2AGeV [8].

of the transverse source, but also made the first measurements of spatial tilts in the

emission region. The Φ dependence of the HBT radii are shown in Fig. 2.7 where

(2.32) was used to fit the φ dependence of the radii which are seen to describe the

overlap region of the two colliding nuclei [8].

The dynamics of the source measured at these lower energies 2 − 8AGeV were

very different from those we find at RHIC [41, 44]. The elliptic flow was much smaller

and a transition from out–of–plane squeeze–out to in–plane flow was determined at
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these energies [41]. While radial flow is present at the AGS, it was ignored in the

E895 azimuthally sensitive analysis due to the low pT cut used in the analysis and to

remove complexities introduces from additional dynamical contributions to the source

radii. Hence while at the AGS the source dynamics were seen to be dominated by the

thermal contribution, Au + Au collisions at RHIC indicate a strong flow which has a

large affect on the momentum distributions. The presence of flow introduces strong

implicit φ dependencies to the spatial correlation tensor elements. The dynamics

observed at the AGS allowed those dependencies to be neglected and so the source

dimensions obtained in E895 from (2.32) was reflective of the actual source geometry.

The emission region found was extended out–of–plane and was found to be consistent

with the overlap region of the two colliding nuclei, suggesting little shape evolution

of the system before freeze–out.
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CHAPTER 3

THE STAR EXPERIMENT

The STAR experiment is one of four commissioned to study the physics of the

Relativistic Hevy Ion Collider (RHIC), shown in Fig. 3.1. RHIC has a top collision

energy for heavy nuclei of
√

sNN ∼ 200GeV . For the first year of data–taking, the

collider accelerated gold (Au) nuclei to an energy of 65AGeV . For comparison, earlier

heavy ion studies have been done using fixed target experiments at the Alternating

Gradient Synchrotron (AGS), which accelerated Au nuclei at various energies up to

√
sNN ∼ 5AGeV , and the Super Proton Synchrotron (SPS) at CERN, which collides

various nuclei including lead (Pb) at
√

sNN ∼ 20AGeV .

The STAR detector (Solenoidal Tracker at RHIC) is comprised of several sub-

systems including a solenoidal magnet, a collection of particle detectors, and several

triggers detectors. The solenoidal magnet is a water cooled design with a maximum

field of 0.5T . A Time Projection Chamber (TPC) is the main tracking device. Also

present in the year 1 detector subsystems were a Ring Imaging Cherenkov (RICH)

detector and a section of a Silicon Vertex Tracker (SVT). Additional detector sub-

systems were installed for the year 2 data acquisition, including the full SVT, and

upgrades will continue throughout the life of the experiment. Events were triggered
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Figure 3.1: Schematic of the RHIC acclerator complex. The circumference of the
RHIC ring is approximately 2.4 miles.

using a pair of detectors called the Central Trigger Barrel and Zero Degree Calorime-

ters. A library of software has been developed to operate the detector subsystems as

well as reconstruct the recorded events. The STAR detector is shown in Fig. 3.2.

Year 1 data was recorded between June and September of 2000. Approximately 1

million minimum–bias events and 1 million central events were collected at a collision

energy of 130AGeV . A percentage of these consist of beam gas events where a collision

occurs between the Au beam and remnant gas particles in the beam pipe. The usable

volume of minimum–bias data consisted of ∼ 150, 000 events.

3.1 The RHIC Accelerator

The beamline for the RHIC complex begins at a Tandem Van de Graaff (TVdG),

which was developed as the first ion accelerator at Brookhaven National Laboratory
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in the late 1960’s. It consists of a pair of electrostatic accelerators that accelerate

ions through a maximum potential difference of approximately 15.5MV . This facility

was used to accelerate the gold ions, emitted from a filament, which were then passed

through a transfer line to the AGS Booster where the ion beams were further acceler-

ated to 37% of the speed of light. During this process, gold foils along the beampipe

serve to further ionize the gold atoms.

In addition to further accelerating the gold beam, the AGS serves to focus the

beam through the use of an alterating gradient field produced by 240 magnets within

the ring. The focusing also serves to remove any nuclei which are not fully ionized.

The maximum energy of the beam from the AGS is ∼ 10AGeV . At this point, the

gold ions are traveling at .997c. From here they are transferred to the RHIC.

The RHIC consists of a pair of synchrotron accelerators, where the nuclei are

further accelerated to their collision energy of up to 100GeV . The transfer between

the AGS and RHIC takes place through a switching magnet which send the ions

through to one of the two beam pipes. Each beam orbit is 2.4 miles in circumference

with six interaction points. The STAR experiment is located at the 6 o’clock position

while the other RHIC experiments are positioned such that: BRAHMS (2 o’clock),

PHENIX (8 o’clock), and PHOBOS (10 o’clock). At each interaction point, the two

beam pipes converge allowing the crossing gold beams to interact. The crossing angle

for gold ions is ∼ 100µrad [45]. The beam luminosity for 2000 was approximately

2.5% of design, ∼ 5 × 1026 cm−2 s−1.
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Figure 3.2: The STAR detector

3.2 The STAR Detector

3.2.1 STAR Magnet

The STAR magnet was designed to provide a uniform magnetic field along the

beam direction. Originally it was designed to be a liquid helium cooled supercon-

ducting solenoidal magnet with an inner radius of 2.3m [46]. To reduce capital costs

and allow for additional detector subsystems to be placed radially within the magnet,

the design was changed to consist of a water cooled conventional warm coil copper

solenoid. The new design increased the inner radius to 2.6m with the solenoid coils

sandwiched to leave gaps allowing detector wiring to pass through. Iron return poles

and yoke consisting of 30 longitudinal bars were used for field shaping/uniformity [47].

The magnet is capable of producing a magnetic field strength up to 0.5T requiring

1MW of power.
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Figure 3.3: The Time Projection Chamber of the STAR detector.

The magnetic field is used to provide momentum reconstruction. In addition, the

design applying electric and magnetic fields in alignment reduced signal diffusion from

the dispersion of gas ionizations as they drifted towards the endcaps. Charged tracks

passing through the detectors within the STAR magnet are curved to form helical

tracks (if one ignores energy loss). The actual track model uses a Kalman fitter which

corrects for energy loss assuming a pion mass thus allowing the momentum and charge

of tracks to be determined.

3.2.2 Time Projection Chamber

The main tracking device for the STAR experiment is the Time Projection Cham-

ber (TPC) which is a 4.2m long annulus with an (inner)outer radius of (0.5)2.0m.

The readout electronics located on the end caps divide the volume of the TPC into 12
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sectors with each sector further divided into 2 subsectors. The volume of the TPC is

also divided into east to west halves by a high voltage central membrane and is filled

with a mixture of Methane and Argon gas, P10. The central membrane produces a

strong �E field causing the electrons of the gas ionizations to drift towards the end

caps. The geometry of the TPC is such that particle tracking is done for |η| < 1.5 [see

Appendix A], a rapidity window containing most of the produced particles for most

central collisions [46, 48]. The TPC is shown in Fig. 3.3 and was the only detector

used for the event reconstruction of this analysis.

Each of the 12 sectors of the TPC is subdivided into inner and outer subsectors

characterized by a change in the readout padrow geometry. The pad design consists

of straight rows of pads in each subsector and is shown in Fig. 3.4. The design of

the subsectors was intended to enhance the event reconstruction in two important

ways. The inner sector, where the track/hit density is highest, used a smaller size

pad, 2.85 × 11.5mm2, in 13 rows to improve the hit resolution. This will improve

tracking by reducing the occurences of split tracks which is very important for many

analyses including HBT. In the outer sector, where the track density decreases, the

focus of the pad geometry is on particle indentification. In this way, the pad size is

increased to improve the measurements of the gas ionization. The outer subsector

consists of 32 rows of 6.2 × 19.5mm2 [46, 47].

The TPC gas chamber is surrounded by both an inner and outer field cage which

controls the voltage drop and subsequent electric field between the high voltage central

membrane and a multiwire proportional chamber (MWPC) and gating grid located

just above the pad array for the two sections of each sector in the TPC. The electrons

produced from particles ionizing the gas as they traverse the detector drift towards
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Figure 3.4: The pad layout for a sector of the TPC in STAR.

the ends of TPC and are amplified as an avalanche of electrons by the MWPC.

This charge buildup is imaged onto the pads and read out with a sampling rate of

100MHz, binned into 512 time buckets. The electrode geometry of the MWPC is

shown in Fig. 3.5 and again shows a change in design elements between the inner and

outer subsectors [49].

The choice of drift gas was based on several features necessary for optimal TPC

performance. Among them were the constraints that the gas be under atmospheric

pressure, and that the gas must have a drift velocity vdft > 2.0cm/µs in an electric

field E < 300V/cm. A mixture of 90% argon to 10% methane (P10) was selected.

The drift speed of P10 at 130V/cm is 5.5cm/µs. Also of importance is the signal

broadening introduced to the hit reconstruction by diffusion of the drift electrons in
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Figure 3.5: Layout of the MWPC subsectors of the TPC in STAR.

the gas chamber. The diffusion coefficients for P10 in the beam (transverse) direction

are 320 (540µm/
√

cm) which correspond to signal widths of 0.3 (0.8cm) [46].

3.2.3 RICH & SVT

In addition to the main tracking detector, the STAR detector included a pair

of novel detectors, the RICH and a partial installation of the SVT. The RICH is a

prototypes of a detector system to be used in the ALICE/CERN experiment while

the SVT is a novel drift detector made of silicon. The RICH detector is intended to

extend the particle identification abilities of STAR to higher pT , ∼ 3GeV/c for pions

and kaons and ∼ 5GeV/c for protons [50]. Particle identification is done through

measurements of the Cherenkov light produced when faster–than–light particles pass

through the detector medium. The RICH detector was located at mid–rapidity along

the −y axis. The SVT installation for year 1 consisted of 1 of 36 ladders of the

full SVT detector located also at midrapidity but along the +y axis. The full SVT

detector was installed for year 2 operation and is expected to improve the resolution of
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both the primary vertex and the particle momentum. In addition, its close proximity

to the primary vertex provided a better opportunity to measure short–lived particles

such as Λ’s.

3.2.4 Triggers

When the beam collision rate exceeds the rate at which the detector can record

data, one must utilize a collection of “fast” detectors, referred to as trigger detector,

to make quick decisions regarding the recording of a particular event. In addition, one

may constrain the types of events saved to disk by triggering on specific event classes

such as central events which are identified via their higher than average multiplicities.

The year 1 triggers for STAR used two detector types, the Central Trigger Barrel

(CTB) and two Zero Degree Calorimeters (ZDC).

Central Trigger Barrel

The central trigger barrel consists of 240 scintillator slats, forming an annulus

just outside the STAR TPC, connected to photo multiplier tubes (PMT). Each CTB

slat subtends a 6o azimuthal angle while having a 0.5 acceptance in rapidity. The

complete CTB has full azimuthal coverage and 2 units of psuedorapidity acceptance,

−1 < η < 1 [51]. The CTB provides a fast measure of the particle multiplicity at

midrapidity. The particles which traverse the CTB excite the scintillator medium

which emits light that is detected by the PMTs. This process is substantially faster

than the time required for the signal in the TPC to drift to the readout electronics on

the end caps, ∼ 0.4µs. This provides event triggering at 2.4MHz. The signal from

the CTB is positively correlated to the multiplicity.
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Zero Degree Calorimeters

The ZDC’s are a pair of calorimeter detectors located ∼ ±20m down the beam

pipe, just beyond the dipole magnets used for beam steering, and have a theta cov-

erage of ∼ 2.5mrad. The coincidence of these signals allows discrimination against

beam–gas events which would produce a signal in only one ZDC. As with the CTB,

the ZDC’s provide a measure of the multiplicity of particles passing though the detec-

tor, but in this case they measure the neutral spectator fragments from the collision.

The production of fragment nucleons from a heavy ion collision is correlated to the

centrality of the collision for very peripheral events and anticorrelated for central

events.

The trigger for year 1 consisted of a combination of the signals from the CTB and

the ZDC’s. A plot of the CTB v. ZDC signal is shown in Fig. 3.6. The minimum–bias

trigger used to collect the data used in this analysis constisted of coincidence signals

in both ZDCs above threshold. The minimumbias trigger combines a coincidence cut

on the ZDC signal with a requirement for the CTB signal to be above threshold. This

produces an event multplicity distribution proportional to the scattering cross-section

of the nuclei.

3.3 Event Reconstruction

The task of the event reconstruction software is to take the digital information

from the detectors and convert it into reconstructed track from which the proper-

ties of particles emitted from the collision can be extracted. The process of event

reconstruction consists of three basic steps:

1. Hitfinding: Locating the positions in the detectors where a track passed.
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Figure 3.6: A plot of ZDC v. CTB signal.

2. Trackfinding: Reconstructing the tracks as sub–collections of hits which rep-

resent that paths of particles emitted from the collision.

3. Main vertex finding: Reconstructing the primary vertex from the track col-

lection

Hit–finding

The hitfinding process of the event reconstruction is broken into two modules TCL

and TPH which perform separate operations in the task of taking the raw data from

the STAR TPC and forming a list of hit positions. The TCL module is designed

to form hit clusters from the raw data tables written out by the data aquisition

(DAQ). These clusters are then passed to the TPH module which forms hits from the
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clusters and converts the padrow information into (x, y, z) coordinates. The hitfinding

algorithm is described in detail in [9].

TCL constructs hit clusters from the output of the STAR data aquisition. The

first step in the cluster formation is to generate a list of data “sequences”. Sequences

are lists of time buckets for a single TPC pad which contains ADC values above the

readout threshold. The ADC data for one timebucket on one pad is referred to as a

pixel. Each STAR event contains approximately 70 million pixels with an estimated

10% occupancy from a Au + Au event. A searching algorithm is then used to group

the data sequences into hit clusters. The algorithm begins at one “end” of the TPC

(early time bucket of a low pad number) and finds a sequence which is not presently

part of a cluster, the seed sequence. It then searches for additional unused sequences

which overlap the seed or the partially constructed cluster. This process is continued

until all possible clusters have been found.

Each cluster is then passed to the TPH module to deconvolute the information

into hit positions. The track density in the TPC, especially in the inner subsector, is

such that many TCL clusters will consist of multiple hits. The TPH module performs

a peak finding algorithm to search each cluster for multiple peaks in the pad–time

bucket–ADC space. Due to the finite size of each of these dimensions, multiple hits

within a single cluster cannot always be resolved. This is referred to as hit–merging.

The estimated merging distance in the (x, y) plane is approximately 1.5cm. The hits

found are then transformed to (x, y, z) coordinates with the z coordinate lying along

the drift axis in the TPC, hence the z coordinate is calculated from the time bucket

information and the known drift velocity.
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Figure 3.7: A flow chart of the event reconstruction code [9].
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Track–finding

The track reconstruction module TPT fits helices to the hits provided by the

hitfinding module. The track reconstruction process has four main substeps: “root”

formation, segment formation, segment merging, and helix fitting. First a 3–point

root is found by searching from the outside–in in the TPC for 3 hits which pass certain

cuts indicating a possible track. This root is then extrapolated to search for additional

hits to extend the root to a track segment. The extrapolation is done in two planes,

the (x, y) and (s, z), due to the helical trajectories the track take within the TPC

[52]. This produces tracks which are circular in the transverse plane and straight lines

in the (s, z) plane. Here s is the path length of the track. After all segments have

been formed, TPT attempts to extend segments to merge any “split” tracks. This

is done by comparing helix parameters such as the helix center and radius. Finally,

the segments are passed to a Kalman fitter to extract physical parameters for each

track such as the transverse momentum, pT , and particle charge. The Kalman uses

a modified helical model which accounts for energy loss of the particles as they pass

through the volume of the TPC. The particles charge is determined by correlating

the curvature direction of the track and the magnetic field.

Main Vertex Finding

The event primary vertex is calculated through an iterative procedure which

projects the track collection to an estimated primary vertex [53]. The solenoidal

geometry of the STAR detector allows one to project along the beam direction or

within the transverse plane to the beam point. Since the collision vertex is expected

to vary by many centimeters along the beam axis, the projection was made in the
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transverse plane. Initially, the entire track collection is used to estimate the main

vertex position. Some of the reconstructed tracks, such as decay products or low

momentum particles, will have large distances separating them from the calculated

main vertex. These outliers are removed from the track collection for subsequent

main vertex calculations. This interative procedure converges within 3–4 interations

with a vertex resolution of ∼ 200µm in each direction [53].

Momentum resolution

By embedding monte carlo tracks into real events, an estimate of the momentum

resolution can be obtained. The momentum resolution decreases at both high and

low pT . This is caused by multiple Coulomb scattering at low pT while at high pT it is

caused by a reduction in the resolution of track curvature. The momentum resolution

of pions in the pT range used in this analysis is < 5%.

Particle Identification

The magnitude of produced charge ionized in the TPC is proportional to the

amount of energy lost. The energy lost by a particle as it travels through a gas

is dependent on the velocity at which it travels and is described by a Bethe–Bloch

formula,

−dE

dx
= κz2Z

A

1

β2

[
1

2
ln

2mec
2γ2β2

I2
Ekin − β2 − δ

2

]
. (3.1)

The Bethe–Bloch formula provides an expression for the average energy loss of a

particle traversing a material and is described in detail in [54]. For each track, a

truncated mean of the energy is made by removing the top 30% of ionization values

along the path length of the track. The energy loss values follow a Landau distribution

and with a finite number of dE/dx datum, the distribution is skewed towards higher
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Figure 3.8: Particle identification via truncated mean energy loss vx. p values with
the expected values obtained from a Bethe–Bloch parametrization.

average values. By truncating, the distribution becomes more Gaussian in which the

mean is closer to the peak. For a given momentum, each particle mass will have a

different velocity and hence a different dE/dx. Therefore by plotting dE/dx vs. p for

all tracks, particle identification is possible. Fig. 3.8 shows the measured energy loss

distribution. The curves represent the Bethe–Bloch curves for the various particles.
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CHAPTER 4

DATA ANALYSIS

The previous chapters have introduced the analysis and described the detector

used to collect the data analyzed. This chapter will present the method used to

analyze the data and discuss issues of importance to event plane pion interferometry.

Well known effects such as track splitting/merging are discussed as well as methods

used to lessen the computing time required to analyze the large number of events.

In addition several analysis techniques used to take into account the imperfections of

the STAR detector (and how it effects event plane interferometry) are presented.

4.1 DSTs → µDSTs

The first step in the process of analyzing the data taken from the STAR detec-

tor was to reconstruct the events into collections of tracks and associated hits. This

reconstructed data, referred to as data storage tape (DSTs), is then written to disk.

These files are further reduced within the framework of an HBT analysis to sepa-

rate the necessary data and written out to a smaller class of files called micro-DSTs

(µDSTs). These typically consist of various event and track parameters such as the

event multiplicity and the track DCA’s, the smallest distance between a track and the

collision point, while removing less important quantities. This results in faster I/O
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for analysis jobs and allows for more exploration with systematic studies. For the year

1 data, taken in the summer of 2000, there are approximately 2,300 minimum–bias

event DST files each of which held about 70 events for a total of ∼150,000 minimum–

bias events. The decrease in data volume is accounted for by beam–gas events and

low multiplicity events for which a usable event plane cannot be determined.

4.2 Event Selection

In HBT one wishes to obtain the space–time dimensions of the particle emmitting

source through the study of the momentum–space distributions of particles. To do

this effectively one must remove detector effects from the data sample. The construc-

tion of the HBT correlation function as the ratio of real event particle pairs, pairs

from the same event, to background particle pairs, pairs taken from mixed events,

provides the functionality of removing detector single particle acceptance effects. The

effectiveness of this method requires that only events with similar characteristics be

included in an analysis. There are 3 main identifying characteristics of events: event

multiplicity, primary vertex position, and the orientation of the event plane. The

mixing of dissimilar events in these categories introduces systematic behavior which

corrupts the physics signal. Is this section I will discuss how these systematic behav-

iors are introduced, and observed in addition to the methods we used to remove these

effects.

The structure of the StHbtMaker allows for multidimensional binning of the events

within an analysis. The method creates a series of mixing buffers separating the events

into different classes as they are read in. This way, only events within the same buffer

are mixed, removing effects due to mixing different classes of events. While this
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Figure 4.1: Flow chart of the process to make the µDSTs.

method is perfectly acceptable from a physics point of view, it can put tremendous

demands on the computing environment one works under. This is due to the fact

that numerous events are held in memory at one time, since previous events are used

to mix with the current events as they are read in. It also requires one to process

large amounts of data at one time to allow enough events to be read in to fill each

mixing buffer and begin event mixing. To alleviate the computing requirements of

the analysis, a new set of µDSTs were made to incorporate event binning according

to the zvtx position of the events in this analysis. A flow chart showing the process

from a collection of DSTs to a set of ordered µDSTs is shown in Fig. 4.1. The two

other binnings were done within the analysis.
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Figure 4.2: Diagram showing simplified TPC acceptance of detector (box) of 2 events
at the edge of the detector geometry. Reconstructed tracks are solid arrows, while
un–reconstructed are dotted arrows.

4.2.1 Primary Vertex Position

We chose to create a set of µDSTs to separate the events according to the primary

vertex position. This was done in a 2–step process. First, the original STAR DSTs

were written to a set of µDSTs which required the primary vertex be within 75cm of

the center of the TPC. These µDSTs were then read and written to a set of vertex–

dependent µDSTs. For this analysis, the events were written to files containing events

within 0.5cm “bins”. This created a set of 300 µDSTs each of which contained events

with a zvtx within 0.5cm of some nominal position. A collection of sub–analyses

were then run in parallel, each on a subset of the 300 files. The output histograms

(numerator and denominator) were then added post run–time to create the correlation

function for the entire data set.

There are 2 possible problems associated with mixing events with different primary

vertex positions along the beam. The first is that the detector acceptance can change

when one varies the location of the primary vertex. The change in acceptance will
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introduce systematics to the correlation function formed with these events. This

becomes obvious if we consider a box–like detector, which is similar to the TPC, with

two events centered at different edges of the detector, see Fig. 4.2.

If we put both of these events into the same analysis mixing buffer, the numerator

made from each event separately will contain low–q pairs, but when we form the

denominator it will have reduced low–q statistics and enhanced high–q statistics.

This comes about from the relative rapidity acceptance of the two events; the rapidity

distribution for one event will be shifted towards +y while the other event will be

shifted towards −y. Fig. 4.3 shows the effect of mixing events with large differences

in zvtx position. The ql projection shows a long slope in the correlation function tail

which reduces the normalization of the correlation function. The reduction in the

normalization is seen in the qo and qs projections. Along each of the three axes, the

correlation function should asymptote to 1. When the ql dependence continues to

fall, the out and side components are shifted up. The data in Fig 4.3 show the out

and side components asymptoting to a value greater than 1.

There are several techniques for removing this effect from the data: reduce the zvtx

range of accepted events (Fig. 4.4); reduce the rapidity range of accepted particles

(Fig. 4.5); or to mix only events with similar zvtx by binning the event collection

(Fig. 4.6). Figs. 4.4 –4.6 show the desired correction effects. Each of these procedures

will correct the correlation function for effects due to rapidity acceptance, but the

first two methods reduce the amount of data. Therefore, we have chosen to create

a binning of the events according to the vertex position and mix only events with

similar verticies.
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Figure 4.3: Bertsch-Pratt projections for an analysis with no vertex binning. The
event vertices vary from −75 < zvtx < 75cm with a cut on rapidity −1 < y < 1. Of
note is the slope in ql which forces the normalization lower. This is evident in the
offset between the data (black stars) and the fit (red line) in qo and qs.
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Figure 4.4: Bertsch-Pratt projections for an analysis with no vertex binning but a
tighter cut on vertex position. The event vertices vary from −35 < zvtx < 35cm
with a cut on rapidity of −1 < y < 1. Of note is the reduced slope in ql improving
the agreement between the data and the Gaussian fit (red line) when compared to
Fig. 4.3.
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Figure 4.5: Bertsch-Pratt projections for an analysis with no vertex binning but a
tighter cut on track rapidity. The event vertices vary from −75 < zvtx < 75cm while
the rapidity cut is −0.5 < y < 0.5. Of note is the reduced slope in ql improving
the agreement between the data and the Gaussian fit (red line) when compared to
Fig. 4.3.
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Figure 4.6: Bertsch-Pratt projections for an analysis with 10 cm vertex binning. The
event vertices vary from −75 < zvtx < 75cm with a rapidity cut of −1 < y < 1. Of
note is the reduced slope in ql improving the agreement between the data and the
Gaussian fit (red line) when compared to Fig. 4.3.
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Figure 4.7: Azimuthal acceptance distribution of π− pairs versus zvtx.

In addition, the azimuthal acceptance of the detector changes as one varies the

zvtx position due to variances in the material present. Although the STAR detector

was designed to have good azimuthal acceptance, changes in the zvtx dependence of

the particle acceptance are present and Figs. 4.7 and 4.8 show the vertex dependence

of the azimuthal acceptance of π− (π+) pairs. Structures present in the distributions

can be attributed to changes in the material between the collision point and the TPC.

The presence of material between the detector and the beam pipe cause different

affects on the two charged pions, whose scattering cross–section are dependent on

momentum [55]. It was discussed in [56] that while negatively charged pions scatter

while passing through material, positively charged pions can be absorbed due to the

different scattering cross–sections between charged pions and nucleons. A measure

of the presence of material can be seen be looking at the distribution of photon
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Figure 4.8: Azimuthal acceptance distribution of π+ pairs versus zvtx.

production points, Z + γ → Z + e− + e+, seen in Fig. 4.9. The distribution shows a

large increase in material present at |zvtx| ∼ 55cm which corresponds to the location

of the SVT and beam pipe support cone. For this analysis, an additional cut was

applied to limit the zvtx < 55cm and hence the effects from material presence.

4.2.2 Event Centrality

In addition to the zvtx binning built into the µDSTs, two event binnings were

included in the analysis. The first of these was a binning with respect to the centrality

of the collision. As seen in Fig. 4.10, the geometry of the overlap region is dependent

on the magnitude of the impact parameter. In addition to the change in geometry,

the centrality of the collision changes the dynamic properties of the system.
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Figure 4.9: “Z” distribution of photon conversion points serving as an indicator of
the amount of material between the emission region and the detector [10].
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Figure 4.10: Dependence of the overlap region on the impact parameter b for non-
central collisions.
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Figure 4.11: Multiplicity distribution of negative hadrons as described in the text for
the minimum–bias selection of events.

The centrality of the events was estimated through the multiplicity of negative

hadrons with at least 10 TPC hits, transverse DCA’s less than 3 cm, and a pseudo-

rapidity |η| < 0.5. This represents the STAR standard year 1 multiplicity measure.

For the minimum–bias collection of events, the multiplicity varied between 0 and

∼ 300 and is shown in Fig 4.11. Similar to zvtx, mixing events in different central-

ity/multiplicty classes can introduce additional artificial structure to the correlation

function. Effects to the correlation function due to multiplicity binning were studied

and found to be minscule yet were included for completeness. The binning used con-

tained 15 bins between a multiplicity of 17 to 400. The lower cut off was also used to

remove low multiplicity events for which the resolution of the event plane calculation

decreased and for which beam–gas contamination is high.
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Figure 4.12: Example of two events with different laboratory event plane angles. The
arrows represent particles accepted into a Φrp correlation function.

4.2.3 Event Plane Angle

In addition to binning the events according to zvtx position and event multiplicity,

one must also bin events according to the orientation of the event plane angle. Effects

similar to those seen from vertex mixing are also present when events are mixed with

different event planes. There are 3 methods one could chose to apply the event mixing

within an azimuthally sensitive HBT analysis to align the events. I will briefly discuss

and explain why 2 of the 3 methods will introduce detector errors to the correlation

function.

The most näive choice one could make is to do nothing to the events and analyze

each in the lab frame. This choice of analysis procedure will lead to a sloping of the

correlation function by introducing different relative momentum distributions in the

numerator and denominator used to construct the correlation function. Fig. 4.12

shows the transverse emission regions of two possible events in the lab frame of an
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experiment. The numerator for each correlation function will contain some collection

of particle pairs with low–q. When one forms the denominator by mixing particles

from the two events there will be virtually no low–q counts from the restriction on

the relative emission angles in the correlation function and the lack of overlap in

momentum space.

Another method one may chose would be to rotate events so all the event planes

point in the same direction in the lab frame, say horizontally, and then analyze. In this

case, the ability of the correlation function to divide out detector acceptance effects

is diminished since the single–particle (and two particle) acceptances are no longer

identical for “real” and “mixed” pair distributions. The effects on the correlation

function in this case are not limited to the low–q region and vary depending on the

geometry of the detector used.

The 3rd method of aligning events within this analysis is to separate the events

into a collection of bins according to the orientation of the event plane. This method

continues to align the detector geometries in addition to the momentum–space accep-

tance of the events contained in each event mixing buffer. This is the method used

in this analysis where bin widths were 7.5o.

4.3 Particle Selection

After one selects the events to include in the analysis, a series of tests/cuts need to

be applied to the collection of particle tracks in the events to select the desired parti-

cles to be used in the HBT analysis. As described in Chapter 3, particle identification

was done through the specific ionization of the particles in the TPC. A correlation
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between the momentum of the particle and the specific ionization allows one to per-

form particle identification. Through a set of “NSigma” cuts, a collection of particles

containing pions and removing protons and kaons was made. For this analysis, pi-

ons were selected by requiring the deviation of the specific ionization to be within

2 standard deviations of the Bethe–Bloche value. These distributions are formed by

projecting the dE/dx vs. p 2–dimensional distribution along sections in momentum

space and fitting to a Gaussian. One however, must also consider the momentum

resolution of the detector in the range of phase–space studied. We focused this anal-

ysis where the momentum resolution for pions was best, 125 < pT < 450MeV/c.

Below 125MeV/c, multiple Coulomb scattering reduces the momentum resolution of

the tracking software while above 450MeV/c track merging (see Sec. 4.4.2) reduces

the ability to identify separate tracks. Within this range, the momentum resolution

was about 2.5% [57]. To remove contributions from non-primary particles with pion

decays (e.g. K and Λ) we applied a DCA (distance of closest approach to the primary

vertex) cut of 3cm to the track collection.

4.4 Pair Selection

Results from particle interferometry require an accurate measurement of the mo-

mentum difference between pairs of particles and is very sensitive to the quality of

the low relative momentum region where the quantum enhancement occurs. It is

this region of phasespace in which two event reconstruction effects come into play for

interferometric analyses. Here I will describe those effects and the procedures applied

for removal and correction of the data.
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Figure 4.13: Plot of C(qinv) to show the effects of track splitting on a correlation
function from raw data (red circles) and Coulomb corrected raw data (black crosses).
Of note is the large value obtained for qinv ∼ 5MeV/c.

4.4.1 Track Splitting

As described in Chapter 3, particle hits are grouped to form tracks. In the process

of forming tracks, the event reconstruction code can reconstruct two separate tracks

from the hits left in the TPC from one actual particle; this is referred to as track

splitting. Track splitting creates an enhancement primarily in the low–q region of

the correlation function and is evidenced by unphysical values for the correlation

function, C(q) > 2.0. This is caused by an increase in the number of low–q pairs in

the real event distribution as single tracks artificially appear twice with approximately

the same momentum. An example of a correlation function suffering the effects of

track splitting is seen in Fig. 4.13. Using a topological track measure described
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below, the amount of track splitting present in the year 2000 data was found to be

∼ 1%. For most any other analysis in STAR, this magnitude of track splitting is

negligible. However, for HBT studies the presence of even a small amount of track

splitting is critical. The effects of track splitting occur exactly where the HBT signal

is present and where the amount of “real” pairs is small. The primary cause of track

splitting is from segmented tracks. This occurs when the track finding algorithm fails

to merge two sections of track separated by a collection of empty pad rows or the

sector boundaries.

A simple method to remove track splitting would be to require each track to have

greater than half the number of possible hits. This method fails in HBT since it will

remove good tracks thereby introducing track merging effects. To correct for track

splitting, a topological cut was applied to track pairs. For each track reconstructed in

the TPC, an associated hit–map is formed which represents the pad row locations of

hits along the reconstructed track. This hit–map consists of a binary string of length

45 (one bit for each pad row) for which “1” indicates the presence of a hit on that

padrow while “0” indicates the absence of a hit on that pad row. The hit–map does

not differentiate between pad rows from separate sectors of the TPC.

As an example, the hit–map for a track with hits in pad rows 1, 4, 5, 6, 13, and

14 would be represented by: ...011000000111001. From the hit map, we can compare

the hit topologies of the track pairs in the analysis to estimate the likelihood of the

pair being a split track. If a single track passed through some volume of the TPC, it

should be expected to leave a maximum of 1 hit on each pad row. Track pairs which

consist of disjoint hit locations indicate the likelihood that they are due to a split
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Figure 4.14: Examples of how the topology map is used to identify split tracks. Closed
squares and open circles represent separate reconstructed tracks. On the left are two
separate tracks while on the right is a likely split track candidate.

track. A diagram showing example hit locations for two cases of track pairs is shown

in Fig. 4.14.

To remove existing split tracks from the analysis, we construct the “quality factor”:

FQuality =

∑45
n=1 A(n)∑
NHits

, (4.1)

where:

A(n) =




1 if both tracks have hits on pad row n
0 if neither track has a hit on pad row n
−1 if only one track has a hit on pad row n

describes the occupancy level of the pad row. The range of the quality factor is

[−0.5, 1.0]. A high quality factor, FQuality ∼ 1.0, indicates a high likelihood of the

track pair being due to a split track. Fig. 4.15 shows 2D plots of the numerator,

denominator, and ratio of the correlation function plotted versus qinv and FQuality.

The characteristic effects of track splitting are seen in both the numerator and the
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Figure 4.15: 2D histograms of the correlation function, C(qinv, FQuality) for 100K
central events for Au + Au at

√
sNN = 130GeV/c. Shown are: (clockwise from top

left) numerator, denominator, and ratio.

ratio histograms at large quality factor and small relative momentum. A series of

projections of the correlation function are shown in Fig. 4.16. These projections are

used to determine the degree to which cuts on the quality factor are able to remove

effects due to track splitting. From these projections, a value of 0.6 was found as the

most effective at removing split tracks while retaining a large fraction of the data.

For this analysis a range of −0.5 < FQuality < 0.6 was used. Simulation studies of a

correlated pion source indicated that a FQuality = 0.6 was a good value to remove the

occurence of track splitting. This was later confirmed through analysis of the year 1

data.
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Figure 4.16: Projections of the 1D qinv correlation function for various ranges of “split
quality” for 100K central events for Au + Au at

√
sNN = 130GeV/c.

4.4.2 Track Merging

In addition to track splitting, additional low–q detector effects are seen due to

track merging. In this case, the reconstruction software mis-identifies a real pair of

particle tracks as one reconstructed track. Where track splitting caused an enhance-

ment of low–q pairs in the correlation function, track merging has the opposite effect;

it causes a depression in the low–q behavior of the correlation function.

To remove effects due to track merging, we used a cut on the separation distance

between tracks within the TPC. There were 3 variations of separation cut tested

within the HBT group: entrance separation, exit separation, and average separation.

The first two cases are self-explanatory; they tested the separation between tracks

when they entered(exited) the TPC at corresponding radii of 50(200)cm. The 3rd cut
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Figure 4.17: Track pair average separation (∆r) correlation function for all track
pairs (black open circles) and track pairs after removal of split track candidates (red
crosses).

was an average of the separation between tracks at 11 radial distances within the TPC

in increments of 15cm beginning at the entrance radius of 50cm. Fig. 4.17 shows the

distribution of pair average separation for real events normalized by the distribution

in mixed events for all pairs (open circles) and pairs which pass the track splitting cut

(red crosses). The decrease in “real” track pairs, reducing the correlation function,

below ∼ 6cm in both data sets is indicative of track merging. In addition, the open

circles indicate the presence and dominance of track splitting for track separations

< 3cm.

Note that all pair cuts (and other cuts) must be applied equally to both the

numerator and denominator, to preserve identical phasespace and acceptance prop-

erties. In the case of track splitting, the primary “action” is within the numerator
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Source 1 Source 2
λ 0.45 0.55
Ro 4.3 20.0
Rs 4.5 13.0
Rl 5.0 13.0

Table 4.1: Source parameters for the event mix simulation used to model the effects
due to the separation cut.

(“real events”), whereas the antimerging cut, the average separation within the TPC,

acts primarily on the denominator (“mixed events”). The average separation cut

removes pairs from the “mixed pair” distribution which would have been merged if

both tracks from the pair were present in the same event.

In addition to removing effects due to track merging, the separation cut also in-

troduced systematic behavior to the HBT radii seen in Fig. 4.18. These effects were

studied extensively in the azimuthally integrated analysis. For the diagonal fit pa-

rameters (λ, R2
o, R2

s, and R2
l ) the merging cut systematically reduced the parameters

as the separation cut was increased. This was attributed to non–Gaussianness in the

correlation function combined with the separation cut’s preferential removal of low–q

pairs. The same behavior is observed in the azimuthally sensitive analysis. Fig. 4.18

shows the systematic behavior introduced to the HBT parameters due to the sepa-

ration cut as crosses. The dependence of a simulated double–Gaussian source to the

separation cut is also shown as open circles. The Gaussian parameters used in the

simulation are given in Table 4.1.
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Figure 4.18: Systematic behavior of diagonal HBT parameters introduced by the av-
erage separation cut for both raw data (red crosses) and a simulated double–Guassian
source (open circles).

qs

oq

oq oq

q <0s
qs

>0

>0

>0

Figure 4.19: Two π− track pairs showing the higher likelihood of track merging for
pairs with a positive correlation between q0 and qs.
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Figure 4.20: Diagram showing the change in the correlation function from an origi-
nally cylindrical source to an artificially tilted ellipsoidal source due to track merging.
On the left is the tilted source caused from preferential removal of track pairs in quad-
rants 2 & 4 associated with π+ while on the right is the tilted source from π−.

The presence of track merging also introduces a systematic shift in the off–diagonal

HBT radii within azimuthally sensitive analyses. Fitting a sinusoidal function,

R2
os = p0 + p2 sin(2φ), (4.2)

to the φ dependence of the R2
os radius parameter indicated a systematic offset seen

as a nonzero p0. The cause of the offset is a preferential merging of track pairs with

correlated transverse momenta, qo and qs as shown for π− pairs in Fig. 4.19. In the

case of π−, there is a higher degree of track merging when |qoqs| = qoqs than when

|qoqs| �= qoqs. For π+, which rotate in the opposite direction, the conditions are

reversed. In this way, track merging introduces a tilt in the Out–Side plane of the

correlation function. For π− the track merging removes more pairs from quadrants 1

and 3 introducing a positive tilt while for π+ more pairs are removed from quadrants
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Figure 4.21: Dependence of R2
os radius fit parameter, p0, to the average track pair

separation. The offsets for π− (π+) are shown as black open circles (red closed
squares).

2 and 4 introducing a negative tilt. Fig. 4.20 shows the artificial tilt introduced to

the pion source from the preferential removal of pairs correlated or anticorrelated

in transverse momenta. Fig. 4.21 shows the dependence of p0 from (4.2) on the

separation cut for both π− and π+ analyses. Measuring the offset in the R2
os radii

provided another estimate of the effective lower bound to the average separation cut,

6cm. An advantage in this case is that we know that the offset R0 must be zero [58],

providing a non–subjective standard with which to work.

4.5 Coulomb Correction

As discussed in Chapter 2, there is a Coulomb interaction between emitted parti-

cles which is not accounted for in theoretical derivations of the correlation function.
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Figure 4.22: Coulomb weight as a function of relative momentum for radii (bottom–
top)0, 4, 6, 8, 12, 16, 20fm for like sign pion pairs.

The Coulomb interaction causes a reduction in the low–q counts in the real pairs of

the correlation function which reduces the correlation function. This can be seen in

Fig. 2.2 where the open circles are the correlation functions prior to Coulomb cor-

rections. To correct for this, a Coulomb weighting is applied to the denominator to

account for the loss of pairs in the numerator [29]. Fig. 4.22 shows the Coulomb

weight as a function of relative momentum for various source radii.

To determine this weighting factor, the Coulomb wave function was integrated

and a correction value obtained for a series of spherical Gaussian sources of various

radii, 0 − 20fm in 2fm increments, and pair relative velocity. This integration is

quite cpu intensive. Since we need this weight for every pair in the analysis (several

million), this data was tabulated into files for like and opposite sign charges:
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η 0fm 2fm . . . 20fm
η1 fc(0fm, η1) fc(2fm, η1) . . . fc(20fm, η1)
η2 fc(0fm, η2) fc(2fm, η2) . . . fc(20fm, η2)
η3 fc(0fm, η3) fc(2fm, η3) . . . fc(20fm, η3)
. . . . . . . . . . . . . . .

Here η = Z1Z2α/vrel is a measure of the relative velocity where Zi is the charge of

particle i, Zi = ±1. In practice, when a source radius is selected, a linear interpolating

function was written to first condense the full lookup table to an array of corrections

for a single source radius,

fc(R, η) =
(R − R<)fc(R>, η) + (R> − R)fc(R<, η)

R> − R<

, (4.3)

where R<(R>) are the highest(lowest) radius in the full lookup table less than (greater

than) the given radius, R. This then gives an array of correction values.

η1 fc(R, η1)
η2 fc(R, η2)
η3 fc(R, η3)
. . . . . .

Each pair to be weighted then has a given value of η. The process of interpolating

between η values was done similarly to Eq. 4.3. While the radial interpolation would

be done only upon the initialization of the analysis, the η interpolation was called for

every pair in the denominator. To minimize the computing requirements associated

with the Coulomb correction, a binary search algorithm was used to determine η< and

η>. This method divided the lookup array in half to determine which half contained

the desired η. Through a series of these divisions, the upper and lower bounds of the

η value could be found. This search procedure scales with the log of the number of

entries in the data array. Search algorithms which linearly searched the data array

or divided the array into equal length rows and columns were also tested. Both

have performance below that of the binary search algorithm. Considerations of such
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technical points are of importance to HBT studies. Correlation analyses are easily

the most cpu–intensive analysis in STAR. The construction of a correlation function

often takes several days, even when using an array (∼ 20) computers in parallel. The

performance of components used several times in an analysis (e.g. StHbtCoulomb)

can determine whether a given analysis is feasible, and whether necessary checks and

systematics are adequately investigated.

When one does identical particle correlations, there is a relation between η and

qinv,

η =
2Z1Z2µα

qinv

, (4.4)

where µ = m1m2

m1+m2
= 1

2
m is the reduced mass. This relation provided the flexibility

to include a “histogram” correction where a user could specify the limits of the qinv

histogram and receive a histogram of the correction values for the midpoints of the

qinv histogram bins, which allowed for the removal of the correction calculation from

the mixed pair formation. This is also implemented for both the 1–dimensional qinv

and 3–dimensional correlation function classes. Differences between this method and

the (in principle better) pair–by–pair correction procedure were seen to be small for

pions. A pair–by–pair Coulomb correction for a 5fm source was used for this analysis.

4.6 Forming the correlation function(s)

There are a few differences between an azimuthal HBT analysis and a standard

azimuthally integrated analysis. To observe the particle source from a series of an-

gles one must construct separate correlation functions for each angle considered. The

particle pairs which enter each correlation function are determined by calculating the

relative angle between the pair transverse momentum, KT , and the event plane angle,
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Φ. For this analysis, four separate correlation functions were formed each with an

angular width of 45o and centered on angles: 0, 45, 90, and 135o. For the present con-

figuration of the STAR detector, the 1st order event plane angle is not reconstuctable.

This analysis was therefore done using the 2nd order event plane. The 1st order event

plane angle tells the direction of the impact parameter, �b, while the 2nd order event

plane angle is that which contains the impact parameter, but cannot discriminate

between �b and −�b. Therefore relative angles greater than 180o are indistinguishable

from angles Φ − 180o as the particle pair transverse emission angle spanned the an-

gular range of 0 to 360o. For relative angles φ = φpair − φEP > 180o, the angle was

transformed by subtracting 180o. Therefore, a correlation function containing pairs

centered about φ also contains pairs centered about φ + 180o. This restriction lim-

its the azimuthal HBT analysis to be sensitive only to even order oscillations in the

HBT fit parameters [58]. Within the restrictions of the STAR data, the transverse

components of Eq. (2.32) simplify to:

R2
s = S11 sin2(φ) + S22 cos2(φ) − S12 sin(2φ)

R2
o = S11 sin2(φ) + S22 cos2(φ) + S12 sin(2φ) −

− 2βT S01 cos(φ) − 2βT S02 sin(φ) + β2
T S00, (4.5)

R2
os = S12 cos2(2φ) +

1

2
(S22 − S11) sin(2φ) +

+ βT S01 sin(φ) − βT S02 cos(φ),

R2
l = S33 − 2βlS03 + β2

l S00

while the other radii: R2
ol, and R2

sl vanish.

Another distinction from “standard” analyses is that one must retain the relative

sign of the q components. The diagonal components of the spatial correlation tensor
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provide length scales parallel to those axes. The off–diagonal terms, like R2
os, provide

a measure of the correlation between the q components giving a measurement of

the orientation of the extension of the source. Fig. 4.23 shows the difference in the

observed correlation function when one maintains the relative signs of the momentum

difference (left) to the case of taking the absolute value of the momentum difference

(right). The orientation of the tilt in the correlation function in q–space is lost when

the absolute value is used.

To ease the demands of the computer in memory handling and swapping, the

correlation function is typically reflected about one of the axes. In this analysis,

the ql component was reflected. To retain the relative q components, the other two

momenta are also reflected. This method reduces the required size of the correlation

function by 2.

4.6.1 Calculating the event plane angle

The experimental procedure for calculating the event plane from the DST files

was a two–step process, as indicated in Fig. 4.1, built into the construction of the

µDSTs. If one calculates the event plane without considerations of the acceptance of

the detector, the distributions of event plane angles will be skewed by the acceptance.

The first step to calculating the event plane angle was to construct a weighting file

to correct for detector acceptance. With a perfect detector, a random distribution of

particles should produce a flat φ dependence. Any structure to the φ dependence is

indicative of acceptance effects. By then weighting the particles by the φ acceptance,

one can correct the calculation of the event plane for detector acceptance. This was

done by passing the DST events to the StFlowMaker which calculated the azimuthal
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Figure 4.23: A diagram showing the effect of not considering the relative sign of the
q components in an anisotropic source. The sign of the tilt angle is lost when the
correlation function is folded into a single quadrant.

distributions of particles with and without pT weighting, wi in (2.41). These distribu-

tions were then used as an azimuthal acceptance correction to flatten the distribution

of calculated event planes when the data were processed a second time [39]. As de-

scribed in Chapter 2, the Event plane was calculated using the method of Poskanzer

and Voloshin (2.41). The acceptance of the year 1 detector geometry was such that

resolution of the first order event plane was too low to be reliable. Therefore, the sec-

ond order event plane which indicates the plane which contains the impact parameter,

but does not distinguish between angles 180 degrees apart was used.

Φ2 = tan−1
(∑

i pT sin(2φi)∑
i pT cos(2φi)

)
/2. (4.6)

Here, φi = py/px is the transverse angle of emission for the particle. The sum in the

equation is over all primary particles. An example of the event plane calculated from
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Figure 4.24: An example of the event plane calculated from a typical STAR event.
The track transverse momenta (px, py) are indicated by black arrows while the recon-
structed event plane is shown as a red line.

an event is shown in Fig 4.24. The event plane found from the equation represents the

angle at which maximum energy is emitted from the emission region in the transverse

plane. The same method was used to measure the STAR v2(pT ) [44, 12].

Finite event multplicities introduce errors to the calculation of the event plane.

This causes a reduction in the magnitude of the oscillations of any variable (including

R2
ii(φ)). Two procedures used to correct for the finite resolution of the event plane

are discussed in Chapter 5. The resolution of the event plane calculation was done
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through the particle flow analysis [39]

Res = 〈cos(2[φm − φr])〉 =

√
π

2
√

2
χ2e

−χ2
2/4[I0(χ

2
2/4) + I1(χ

2
2/4)]. (4.7)

For this analysis, 〈cos(2[φa −φb])〉 ∼ 0.56 which corresponds to an angular resolution

of approximately 28o.
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CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, the theory presented in Chapter 2 and the analysis software de-

veloped in Chapter 4 will be applied to study the azimuthal dependence of the HBT

fit paramaters for 130AGeV Au + Au collisions produced at RHIC and measure with

the STAR detector. The data analyzed consisted of a minimum-bias collection of

approximately 150,000 events recorded in the late summer of 2000. The results will

be compared and interpreted within a hydrodynamic blast wave parameterization. In

addition, comparisons will be made to both hydrodynamic and molecular dynamic

models.

As described in Section 4.6, a series of 3–dimensional Pratt–Bertsch correlation

functions are formed by binning particle pairs according to the angle between the

pair momentum and the event plane. In this analysis a set of four angles were used,

centered at 45, 90, 135, and 180o; each bin has an angular width of 45o. The 180o

correlation function is identical to 0o and so the data points are plotted at both angles.

The year 1 acceptance of the STAR detector limited the resolution of the event plane

to only even order making measurements of event plane angles φ indistinguishable

from φ + 180o. A Gaussian parameterization is used to fit the correlation functions
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whose form is

C(q, φ) = 1 + λ(φ) exp [−
∑

i,j=o,s,l

qiqjR
2
ij(φ)]. (5.1)

Here, o, s, l are the Pratt–Bertsch directions (see Section 2.1.4), giving 6 independent

parameters, and φ is the pair emission angle relative to the event plane. A combina-

tion of using the 2nd order event plane and a midrapidity phase space simplifies (5.1)

(see Section 2.3) to

C(q) = 1 + λe−q2
oR2

o−q2
sR2

s−q2
l R2

l −2qoqsR2
os . (5.2)

5.1 Separate π− π− & π+ π+ analyses

Figs. 5.1 and 5.2 show 1–dimensional projections of the correlation functions in

the Pratt–Bertsch system for π− and π+ pairs respectively. Each row represents a

different angle beginning with 45±22.5o along the top row and ending with 180±22.5o

along the bottom row. The lines are projections of fits of the correlation data to

(5.2). All projections are integrated over ±30MeV/c along the orthogonal momentum

components.

The data have been corrected for both track merging and splitting as described in

4.4.1 and 4.4.2. In addition, Coulomb effects have been acccounted for by applying a

correction corresponding to a 5fm source as described in 4.5.

Tables 5.1 (π−) and 5.2 (π+) list the Gaussian fit values for each relative emission

angle. Note that we fit the squared HBT radii using a Minuit χ2 fitting method.

Figs. 5.1 and 5.2 indicate the level of agreement between the data and the Gaussian

fit used to extract the source radii.

While the diagonal fit radii (R2
o, R2

s, and R2
l ) are required to be positive, the

sign of the cross–term, R2
os, is significant in that it describes the orientation of the
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Figure 5.1: Pratt–Bertsch projections for π− π− pairs emitted (top–bottom) at φ =
45, 90, 135, 180 ± 22.5o. The lines are projections of fits to (5.2). All projections are
integrated over ±30MeV/c in the perpendicular momentum components.
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Figure 5.2: Same as Fig. 5.1, but for π+ π+ pairs.
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φ (o) λ R2
o (fm2) R2

s (fm2) R2
l (fm2) R2

os (fm2)
0 = 180 0.438 ± 0.007 18.0 ± 0.5 20.1 ± 0.5 25.7 ± 0.7 −0.9 ± 0.3

45 0.434 ± 0.007 17.8 ± 0.5 19.8 ± 0.5 25.3 ± 0.6 0.4 ± 0.3
90 0.442 ± 0.007 19.9 ± 0.5 19.1 ± 0.5 26.3 ± 0.7 0.2 ± 0.3
135 0.433 ± 0.007 18.3 ± 0.5 18.7 ± 0.4 25.7 ± 0.7 −0.7 ± 0.3

Table 5.1: Angular dependence of uncorrected fit parameters for (5.2) for π− π−.

φ (o) λ R2
o (fm2) R2

s (fm2) R2
l (fm2) R2

os (fm2)
0 = 180 0.428 ± 0.007 16.4 ± 0.4 20.2 ± 0.5 24.8 ± 0.6 −0.1 ± 0.3

45 0.442 ± 0.007 18.6 ± 0.5 19.8 ± 0.5 26.8 ± 0.7 0.6 ± 0.3
90 0.425 ± 0.007 17.4 ± 0.5 18.8 ± 0.5 26.1 ± 0.7 −0.3 ± 0.3
135 0.436 ± 0.007 18.0 ± 0.5 19.5 ± 0.4 25.8 ± 0.7 −1.3 ± 0.3

Table 5.2: Same as Table 5.1 for π+ π+ pairs.

tilt of the corrrelation function in the qo–qs plane. As the angle varies from 0 −
180o, sinusoidal oscillations are observed in the transverse radii, R2

o, R2
s, and R2

os.

Theoretically, R2
os = 0 at both 90 and 180o due to the symmetry of the collisions

while R2
os(135o) = −R2

os(45o). The longitudinal radius R2
l is seen to remain roughly

constant, R2
l (φ) ∼ 26fm2. The λ parameter is also expected to have no φ dependence.

This is also seen in the fit results where λ(φ) ∼ 0.44.

The φ dependence of the HBT fit parameters are shown as black circles in Figs. 5.3

and 5.4. Fit parameters for φ = 0o are also plotted as open symbols at φ = 180o.

Figs 5.3 and 5.4 show that both R2
s and R2

os exhibit sinusoidal oscillations. The

dependence of the outward radius is less certain especially in the π− case, Fig. 5.3.

This is thought to be due to the reduced statistics available in the year 1 data set. An
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π− π+
R0 (fm2) R2 (fm2) R0 (fm2) R2 (fm2)

R2
o 18.4 ± 0.2 −0.9 ± 0.4 17.6 ± 0.2 −0.5 ± 0.3

R2
s 19.4 ± 0.2 0.5 ± 0.3 19.6 ± 0.2 0.7 ± 0.3

R2
os −0.3 ± 0.2 0.5 ± 0.2 −0.2 ± 0.2 1.0 ± 0.2

Table 5.3: Values for sinusoidal fits (5.7) to the transverse radii.

analysis of year 2 pion data indicate a much improved signal in R2
o providing support

for this argument [59]. Linear behavior is clearly seen in both uncorrected λ(φ) and

R2
l (φ).

The λ parameter for both π− and π+ is seen to be constant, λ ∼ 0.45, as a function

of φ. This result is in agreement with the azimuthally integrated results [3]. Devi-

ations from λ = 1 in the fully corrected values are attributed to contributions from

pions originating from long lived particles such as Λ and Ξ and particles misidentified

as pions [3].

The transverse radii exhibit sinusoidal oscillations. Results of sinusoidal fits are

shown in Table 5.3 and also shown as lines in the φ dependent plots of the transverse

radii in Figs. 5.3 (π−) and 5.4 (π+). An initial interpretation of the φ dependence

of the azimuthal HBT radii, assuming source dynamics are dominated by thermal

motion, suggests the evolution to an out–of–plane extended particle source created

in noncentral collisions. While the geometry of the emission region dominates the

HBT signal, the presence of elliptic flow also contributes to the oscillations found

in the azimuthal radii and can mask the magnitude of the actual source anisotropy
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Figure 5.3: π−π− RP HBT parameters with sinusoidal fits to transverse radii and
linear fits to λ and R2
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Figure 5.4: Same as Fig. 5.3 for π+ π+ pairs.
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[60]. This will be discussed further within the context of a blast wave source model

in section 5.5.

Similar to the azimuthally integrated analysis, the relative sizes of R2
o and R2

s

are expected to be representative of the timescale of emission duration for low pT

particles through the ratio or difference of the radii. Strictly, this is true only when

correlations between emission points and emission times and x − p correlations are

negligible[61]

R2
s = 〈x̃s〉2 (5.3)

R2
o = 〈(x̃o − βT t̃)2〉 (5.4)

R2
o − R2

s = β2
T 〈t̃2〉 − 2βT 〈x̃ot̃〉 + 〈x̃o

2 − x̃s
2〉. (5.5)

When one neglects the second term of (5.5) and noting that x̃o
2 = x̃s

2 for an az-

imuthally symmetric source with no x − p correlations, the difference in the out and

side can radii can be expressed as

R2
o − R2

s = β2
T 〈t̃2〉. (5.6)

The ratio of R2
o to R2

s is also influenced by the amount of radial flow in the source.

The presence of flow squeezes the emission region of higher pT particles to the surface

of the source volume. This reduces the depth of the emission region faster than

the surface cross-section thereby reducing the relative size of the outward versus the

sideward radii. The amount of collective flow at RHIC indicates the presence of

a substantial amount of space–momentum correlations making relation (5.6) overly

näive requiring model comparisons to obtain predictions for the emission timescale.

The limited statistics available for the separate analyses reduced the significance

of the oscillations measured for both π− and π+ and made any interpretations less
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Figure 5.5: Comparison plot of π+ π+ (red triangles) and π− π− (black circles) results.
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Correlation Function χ2/NDF
45o 32678.9 / 32000
90o 32259 /32000
135o 32663.9 / 32000
180o 32782.4 / 32000

Table 5.4: Table of χ2 and number of degrees of freedom (NDF) for comparison of
π− and π+ angular correlation functions.

certain. In all aspects, the results obtained from the π− analysis is found to be roughly

consistent with those obtained from π+. Table 5.4 shows the χ2 comparison of the

π− and π+ correlation functions. Of note is the normalized χ2 values which indicte

good agreement between the two data sets. This is in agreement with the fitted HBT

parameters. A plot of the φ dependence of the corrected HBT fit parameters for

both π− and π+ is shown in Fig. 5.5. In both cases, the oscillation in R2
o is less than

convincing. This may be due to a lack of statistics as higher statistics analysis of year

2 suggests. To alleviate this restriction, an analysis containing correlations for both

π− and π+ are combined to produce a charged pion analysis.

5.2 φ Dependent HBT with Charged Pions

The symmetry of emission of charged pions allows one to combine the analyses of

π− and π+ to reduce statistical errors in the HBT fit radii. To do this, the correlation

functions formed from independent analyses for π− and π+ are summed. This is

done by adding the real pair distribution and mixed pair distributions separately

and forming the correlation function subsequently by dividing these distributions.
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φ (o) λ R2
o (fm2) R2

s (fm2) R2
l (fm2) R2

os (fm2)
0 = 180 0.433 ± 0.005 17.2 ± 0.4 20.3 ± 0.3 25.4 ± 0.5 −0.5 ± 0.2

45 0.438 ± 0.005 18.2 ± 0.4 19.9 ± 0.3 26.1 ± 0.5 0.5 ± 0.2
90 0.434 ± 0.005 18.6 ± 0.4 19.1 ± 0.3 26.3 ± 0.5 −0.0 ± 0.2
135 0.436 ± 0.005 18.2 ± 0.3 19.2 ± 0.3 25.9 ± 0.5 −1.0 ± 0.2

Table 5.5: Azimuthal dependence of the raw HBT fit parameters for a like sign
charged pion analysis.

The cuts used to remove merged and split tracks and the correction procedures were

identical to those of the separate analyses.

The Pratt–Bertsch projections for the summed analysis are shown in Fig. 5.6.

Projections of a fit to (5.2) are included as a red line. In both cases, the projections

integrate over ±30MeV/c in the perpendicular axes. Similar to the separate π− and

π+ analyses, the χ2/DOF is ∼ 1 and varied from 1.032 @ 90o to 1.050 @ 45o and

again indicate a good agreement between the experimental correlation function and

the Gaussian ansatz, at the 99% confidence level [62]. The corrected fit parameters

are also included in Table 5.8.

Figure 5.7 shows the dependence of the uncorrected φ dependence of the HBT fit

values which are also shown in Table 5.5. The oscillations in the transverse radii are

more clearly defined and indicate a magnitude of oscillation of approximately 2fm2.

Linear fits are included for both λ and R2
l . The transverse radii are fit to 2nd order

sinusoidal functions. The R2
s fit parameter, which is most closely related to geometric

shape, näively indicates the presence of an out–of–plane extended source. To extract

the true source shape, contributions from both source geometry and dynamics must

be considered making the interpretation model dependent.
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Figure 5.6: Pratt–Bertsch projections for same sign charged pion pairs emitted (top–
bottom) at φ = 45, 90, 135, 180 ± 22.5o relative to the event plane angle. The lines
are projections of fits to (5.2). Projections are integrated over ±30MeV/c in the
perpendicular momentum components.
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Figure 5.7: Dependence of the HBT fit parameters from (5.2) as a function of the pair
emission angle relative to the event plane for a summed π− and π+ analysis. Linear
fits to λ and R2

l and 2nd order sinusoidal fits to the transverse radii are included.
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5.3 Data Corrections

5.3.1 Track Merging

The average separation cut used to remove effects due to track merging intro-

duced a systematic reduction to the diagonal HBT fit parameters, λ, R2
o, R2

s, and

R2
l . Simulation studies for the azimuthally integrated analysis indicated the cause

of the reduction as due to non–Gaussianess in the correlation function [3]. A double

Gaussian source simulation was used to estimate the reduction as described in Sec-

tion 4.4.2 and shown in Fig. 4.18. A linear fit to the slope of the fit parameters versus

separation cut showed λ to be reduced by ∼ 14% while the radii were reduced by 16,

11, and 8% for R2
o, R2

s, and R2
l respectively. This is a similar reduction to that found

in [3].

5.3.2 Event Plane Resolution

Finite event plane resolution reduces the magnitude of the measure oscillations

in the HBT radii as a function of φ. Two methods to correct the data for this

effect were studied. The first method which is pictorially intuitive was first developed

yet is technically incorrect. It is included here due to the work that was devoted

to it and to serve as a reference to the correction method used for data that has

been presented at various conferences. This method applies the correction to the

fitted radii themselves to increase the magnitude of oscillation in the transverse HBT

radii only. The second correction method is applied to the correlation functions, the

numerator and denominator separately. Finite event plane resolution distorts the φ

dependence of the relative momenta reducing the oscillations in the HBT radii by

smearing the entries in the numerator and denominator histograms. The second and
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Figure 5.8: Diagram showing the effect of finite event plane resolution on the measured
transverse HBT radii as assumed in the intuitive method. The dotted arrows represent
the actual widths of the source while the solid arrows indicate the widths measured
through experiment.

correct method to account for finite event plane resolution corrects the distortions in

the histograms themselves prior to the Gaussian fits.

Intuitive Radii Correction

Fig. 5.8 shows the pictorial representation of the assumed effect of finite event

plane resolution to the φ dependent source radii. In this method, it is assumed

the oscillations in the radii themselves are reduced from the imperfect resolution of

the event plane by forming a superposition of sources misaligned to the measured

event plane. Note that this method treats the longitudinal radius R2
l as being φ

independent. Correction method 2 (see Section 5.3.2) will show this not to be a valid
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φ (o) λ R2
o (fm2) R2

s (fm2) R2
l (fm2) R2

os (fm2)
0 = 180 0.503 ± 0.007 20.6 ± 0.8 22.6 ± 0.8 27.8 ± 0.7 −1.3 ± 0.6

45 0.498 ± 0.007 20.2 ± 0.8 22.2 ± 0.8 27.4 ± 0.6 0.8 ± 0.6
90 0.507 ± 0.007 24.0 ± 1.0 20.9 ± 0.8 28.4 ± 0.8 0.5 ± 0.6
135 0.498 ± 0.007 21.1 ± 0.9 20.1 ± 0.8 27.8 ± 0.7 −1.1 ± 0.6

Table 5.6: Azimuthal dependence of the π− π− HBT fit parameters corrected for both
the separation systematic and finite event plane resolution.

assumption. A two step process is used to correct the radii for this effect. First the

φ dependence of the radii are fit to sinusoidal functions

R2
o,s = R0 + R2 cos(2φ) (5.7)

R2
os = R0 + R2 sin(2φ). (5.8)

The transverse radii are then scaled by the event plane resolution factor, 〈cos(2(ψ −
ψ′))〉 described in Section 4.6.1

R′
o,s,os[φi] = R0 +

1

〈cos(2(ψ − ψ′))〉(Ro,s,os[φi] − R0). (5.9)

This method increases the magnitude of the transverse oscillations while retaining the

mean value by which they oscillate. The resolution factor for the minimum–bias event

collection used in this analysis was measured to be approximately 0.56 corresponding

to a angular resolution of ∼ 28o. The azimuthal dependence of the corrected HBT

radii are shown in Tables 5.6, 5.7, and 5.8.

Fig. 5.9 shows the charged pion summed analysis HBT radii. The raw data

are shown as black circles with the corrected radii for separation systematic (green

squares) and with the radii resolution correction (red triangles). Also included is a

hydrodynamic model parameterization calculation for the transverse radii which is
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Figure 5.9: Dependence of the HBT fit parameters from (5.2) as a function of the
pair emission angle relative to the event plane for a summed π− and π+ analysis.
The black circles are the raw data while the green squares are the data corrected
for the systematic reduction in fit parameters due to the track merging cut. The
red triangles are the data after applying a (parameter) correction for event plane
resolution in addition to the merging correction. The lines represent the results of a
blast wave calculation using the parameters in Table 5.10.
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φ (o) λ R2
o (fm2) R2

s (fm2) R2
l (fm2) R2

os (fm2)
0 = 180 0.493 ± 0.007 18.6 ± 0.8 22.8 ± 0.8 26.9 ± 0.6 −0.0 ± 0.5

45 0.507 ± 0.007 22.4 ± 0.9 21.9 ± 0.8 28.8 ± 0.7 1.3 ± 0.6
90 0.490 ± 0.007 20.2 ± 0.9 20.3 ± 0.8 28.2 ± 0.7 −0.3 ± 0.6
135 0.501 ± 0.007 21.3 ± 0.9 21.4 ± 0.8 27.9 ± 0.7 −2.1 ± 0.6

Table 5.7: Same as Table 5.6 for π+ π+ pairs.

φ (o) λ R2
o (fm2) R2

s (fm2) R2
l (fm2) R2

os (fm2)
0 = 180 0.499 ± 0.005 19.6 ± 0.6 22.8 ± 0.6 27.5 ± 0.5 −0.6 ± 0.4

45 0.503 ± 0.005 21.3 ± 0.6 22.2 ± 0.6 28.2 ± 0.5 1.1 ± 0.4
90 0.499 ± 0.005 22.0 ± 0.7 20.7 ± 0.6 28.5 ± 0.5 0.1 ± 0.4
135 0.500 ± 0.005 21.3 ± 0.6 20.9 ± 0.6 28.0 ± 0.5 −1.6 ± 0.4

Table 5.8: Same as Table 5.6 for summed π+ π+ and π− π−.

described in Section 5.5. The resolution correction is seen to approximately double

the magnitude of oscillation in the 3 transverse radii.

Histogram Correction

While the previously described event plane resolution correction procedure is in-

tuitive and can be understood easily graphically, it is technically incorrect. The

smearing of the correlation function by imperfect event plane reconstruction is ex-

prected to diminish the amplitudes of the oscillations in the transvserse radii, but the

effect it has on a correlation function is truely present in the individual bins of the

separate histograms from the real and mixed pair distributions. The distribution of
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reconstructed event planes follows the form[39]

p(φm − φR) =

∫
v′

mdv′
m

2πσ2
× exp

(
− v2

m + v′2
m − 2vmv′

m cos[m(φm − φR)]

2σ2

)
, (5.10)

where σ is a factor dependent on the event multiplicity. The correlations are also

distorted from finite binning of the correlation functions in φ, reducing the amplitudes

of oscillations in the radii through an additional distribution,

f∆(φ − Φ) =
1

∆
θ(φ − Φ +

1

2
∆) θ(

1

2
∆ − φ + Φ), (5.11)

where ∆ is the angular width of the bins.

A model independent correction method was introduced in [58] to account for both

finite event plane resolution and binning of the correlation functions in finite φ bins.

In the construction of the correction method, the correlation function histograms

(both numerator and denominator) are expanded into Fourier series

H(q, Φ − ψm) = Hexp
0 (q) + 2

nbin∑
n=1

[Hexp
c,n (q) cos(n(Φ − ψm)) +

+ Hexp
s,n (q) sin(n(Φ − ψm))]. (5.12)

Here, Hexp
c,n is used to represent either the numerator (N) or denominator (D) Fourier

components of the histogram expansion obtained from

Hexp
c,n (q) =

1

nbin

nbin∑
i=1

Hexp(q, Φi) cos(nΦi) (5.13)

and

Hexp
s,n (q) =

1

nbin

nbin∑
i=1

Hexp(q, Φi) sin(nΦi). (5.14)

This is similar to the expansion of the momenta distribution used to calculate the

flow coefficients, vn, from (2.38).
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By folding the Fourier expansions with the effects of event plane binning and

resolution one can obtain the histogram correction:

H(q, Φi) = Hexp(q, Φi) + 2

nbin∑
n=1

ζn,m(∆)[Hexp
c,n (q) cos(nΦi) +

+ Hexp
s,n (q) sin(nΦi)]. (5.15)

The ζm,n coefficients contain both binning and resolution effects

ζn,m(∆) =
n∆/2

sin(n∆/2)〈cos(n(ψm − ψR))〉p − 1, (5.16)

where, 〈cos(n(ψm −ψR))〉 is the resolution factor obtained from the sub–events. This

is identical to the correction procedure for elliptic flow, but in this case, the correction

is applied for every �q and φ bin separately for the numerator and denominator. In

the case of binned data points, only Fourier components n ≤ nφbin contribute [58].

The results of applying the histogram resolution correction to the data is shown

in Fig. 5.10. The fit parameters are also shown in Table 5.9. In comparison with the

radial correction discussed in Section 5.3.2, we see that the correction values obtained

through the histogram bin content method is approximately the same as the fit pa-

rameter correction. The blast wave parameterization used to describe the transverse

radial oscillation continues to roughly agree with the data. This parameterization

makes no prediction for the structure of the φ dependence of the longitudinal radius

although it is clear that an oscillation is present in the corrected R2
l (φ).

5.4 Correction Uncertainties

Uncertainties in the correction associated with both the separation cut and the

event plane resolution introduce systematic error to the fully corrected radii. As

with the azimuthally integrated analysis, the error due to the separation cut was
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Figure 5.10: The φ dependent HBT radii: raw fit values are shown as black circles
while event plane resolution corrected (histogram bin content method) values are
shown as red triangles and additionally corrected radii for the separation systematic
are shown as green squares. A comparison to the transverse HBT radii from the blast
wave hydrodynamic model are included as black lines in R2

o, R2
s, and R2

os while both
λ and R2

l are fit to linear functions.

103



φ (o) λ R2
o (fm2) R2

s (fm2) R2
l (fm2) R2

os (fm2)
0 = 180 0.433 ± 0.005 16.6 ± 0.3 20.6 ± 0.3 24.7 ± 0.4 −0.7 ± 0.2

45 0.439 ± 0.005 18.2 ± 0.3 20.3 ± 0.3 26.0 ± 0.5 1.2 ± 0.2
90 0.436 ± 0.006 19.5 ± 0.4 18.5 ± 0.4 27.0 ± 0.6 0.2 ± 0.3
135 0.434 ± 0.005 18.2 ± 0.3 18.8 ± 0.3 25.7 ± 0.5 −1.7 ± 0.2

Table 5.9: φ dependent HBT fit parameters corrected for event plane resolution using
the histogram correction method.

estimated to be equal to the correction itself, between 8− 16% for λ, R2
l , R2

o, and R2
s.

An additional source of systematic error is introduced from the Coulomb correction.

By varying the source correction radius, a variance of ≈ 10% in the diagonal fit

parameters is found while the cross term radius, R2
os, was little changed.

5.5 Towards a consistent description of the source

STAR was envisioned as a flexible detector designed to provide a means to corre-

late the mesurement of many observables to better characterize the freeze–out configu-

ration. By combining the measurements of several quantities, one can take advantage

of the sensitivities of each observable to various source characteristics to obtain a

more detailed picture of the evolution of the emission region. This also provides more

constraints on dynamic models of the collision. Hydrodynamic models are seen to

well reproduce the charged particle spectra and v2 as a function of pT � 1GeV/c

measured at RHIC by STAR and PHENIX [63]. Comparisons with both RQMD and

hydrodynamic models indicate that although neither is successful at predicting the

size of the HBT radii they both reproduce the phases and magnitudes of the oscilla-

tions in the transverse HBT radii shown in Figs 5.11 and 5.12. From the figures one
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notices the discrepancy between the sideward radii where the both model calculations

predict a squared radius ∼ 10fm2 whereas the data give sidward radii ∼ 20fm2. The

outward radii in both model agree reasonably well in magnitude, but the relative

sizes of out and side are suggestive of very different dynamical properties between the

models and the data. In [2], the effects of including a dilute rescattering phase to a

hydrodynamic simulation on the source geometry was investigated. To measure the

source anisotropy, they included a s′2 parameter,

s′2 =

〈
x2 − y2

x2 + y2

〉
. (5.17)

The results show that the inclusion of the dilute rescattering from RQMD lengthens

the lifetime of the source. This allows the in–plane elliptic flow produced during the

early hydrodynamic phase to push the initial spatial anisotropy from out–of–plane

extended, s′2 ∼ −0.015, to a final in–plane extended source, s′2 ∼ 0.015. This is

important, since late stage hadronic interactions actually worsen the “RHIC HBT

Puzzle” [63]. The Teaney/Shuryak calculation provides a qualitative feature (in–

plane or out–of–plane shape) to study in the data, which reflects the late hadronic

stage.

In [12], the identified particle v2(pT ) STAR results were compared to a hydrodynamic–

inspired circular blast wave parametrization first introduced by Siemens and Ras-

mussen in the late 70’s [64]. This parameterization provides a convenient formalism

to describe the freeze–out configuration of the emission region formed in the heavy

ion collisions. It also has the flexibilty to be used to describe a variety of obserables

each of which is sensitive to different parameters of the model.
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Figure 5.11: Azimuthal oscillations of the HBT radii at Y = 0 for b = 7fm Au + Au
collisions at

√
sNN = 130GeV from hydrodynamic simulation [11].

In the Boltzmann approximation, the freeze-out spectrum can be simplified to the

form,[65]

d4N

dy dm2
T dφp

∼
∫

dφb K1(β(φb)) eα(φb) cos(φb−φp). (5.18)

This provides an analytic expression for the elliptic flow

v2(pT ) =

∫
dφb cos(2φb) I2(α(φb))K1(β(φb))∫

dφb I0(α(φb))K1(β(φb))
. (5.19)

In the above equations, φb is the flow boost angle perpendicular to the freeze–out

surface, α(φ) = (pT /T ) sinh(ρ(φ)), and β(φ) = (mT /T ) cosh(ρ(φ)) where ρ(φ) =

ρ0 + ρ2 cos(2φ) represents the radial flow which may oscillate with φ. Fig. 5.13 shows

the STAR v2(pT ) for identified pions, kaons, and protons. The dotted lines in Fig. 5.13

are fits to (5.19). An additional spatial anisotropy of the form (1 + s2 cos(2φb)) was
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Figure 5.12: Azimuthal dependence of the pion HBT radii from a RQMD simulation
at RHIC energies. Also included are linear fits to λ(φ) and R2

l (φ) while the transverse
radii are fit to second order sinusoidal functions (see (5.7)).
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Figure 5.13: Differential elliptic flow for pions, kaons, and protons + antiprotons
for minimum–bias events. The solid lines show the fit with the modified blast wave
model, and the dotted lines are fits with the unmodified model.[12]
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Tf (MeV ) ρ0 ρ2 s2 Ry(fm) τ(fm/c)
135 ± 19 0.58 ± 0.03 0.09 ± 0.02 0 — —
101 ± 24 0.61 ± 0.05 0.04 ± 0.01 0.04 ± 0.01 — —

100 0.61 0.04 0.04 11.7 2.2

Table 5.10: Blast wave fit parameters for the STAR v2(pT ) results without a spatial
anisotropy (top row) and with (middle row). Also, the parameters used to describe
the R2

i,j(φ) seen in Figs. 5.15 and 5.16 are shown in the bottom row.

introduced to (5.19) and also fit to the data seen as solid lines in Fig. 5.13.

v2(pT ) =

∫
dφb cos(2φb) I2(α(φb))K1(β(φb))(1 + 2s2 cos(2φb))∫

dφb I0(α(φb))K1(β(φb))(1 + 2s2 cos(2φb))
. (5.20)

With the inclusion of a spatial anisotropy, the now modified blast wave is able to

reproduce the STAR v2(pT ) very well. Table 5.10 shows the fit values for the two

cases of the blast wave [12].

The improvement of the fit to the Huovinen model when a nonzero s2 was included

provided a strong indication of the presence of some type of spatial anisotropy. While

the nonzero s2 provides evidence suggesting a spatially anisotropic source, it is am-

biguous as to its character. Examination of (5.20) reveals that s2 > 0 indicates more

source elements emitting in–plane. Note that ρa > 0 means the in–plane sources have

stronger boost. Both s2 > 0 and ρa > 0 produce/contribute to the elliptic flow signal

v2(pT ), but in different ways. There are several ways to modify the source function to

account for more source elements emitting in–plane. We consider two limiting cases:

1. The transverse source remains circular, but has a higher density in–plane

2. The source density is constant, but the source shape is extended out–of–plane

shown in Fig. 5.14 The original construction of the freeze–out geometry consisted of
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Figure 5.14: Example diagrams of the two limiting cases of the interpretation of the s2

parameter. A modulated source density within a circular emission region is shown to
the left while a source characterized by uniform density, but extended out–of–plane,
is shown to the right.
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Parameter Symbol Spectra Elliptic Flow (v2) Rij(pT , φ)
Temperature T Yes Yes Yes
Radial flow ρ0 Yes Yes Yes

Flow anisotrpy ρa Yes Yes
Coordinate anisotropy s2 Yes Yes
Interpretation of s2 Yes

Source size Rij Yes
Particle emission duration τ Yes

Table 5.11: A table indicating the sensitivity to each of the blast wave parameters of
various observables from STAR.

a circular annulus, and so a natural interpretation of the s2 parameter would be as

a modulation of the particle density in the circular source. In this case, a positive

s2 would indicate an increase on the number of sources in–plane, while a negative s2

would indicate a larger number of sources out–of–plane. However, another possible

interpretation of the spatial anisotropy is a change in the geometric extension of

a homogeneous source. The elliptic flow boost is normal to the freeze–out surface

indicating that, within this interpretation, a positive s2 represents a source extended

out–of–plane. Table 5.11 shows the dependencies of the particle spectra, elliptic flow,

and φ dependent HBT.

The particle spectra are related to the phase space density function by

Ep
d3Na

d3�p
=

∫
d4x Sa(x, p). (5.21)

From (5.18), one finds a blast wave source function

S(x,p) = K1(β(φb))e
α(φb) cos(φb−φp)δ(r − R) (5.22)
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where δ(r−R) provides the shell structure of the annulus of radius R. By modifying

(5.22) to be a continuous function in coordinate space, the implications of the two lim-

iting cases of the s2 parameter on the transverse HBT radii can be calculated within

the blast wave parameterization. The modulated source density can be included by

replacing the delta function in (5.22) with (1+ s2
r
R

cos(2φb))Θ(R− r) while the ellip-

tical source function can be modeled with Θ(1−√
y2 − η2x2/Ry), where η = Ry/Rx

and

Θ(x) =

{
0 if x < 0
1 if x > 0.

(5.23)

This results in modified blast wave source functions for the two cases (modulated

density and elliptical source shape)

S(x,p) = K1(β(φb))e
α(φb) cos(φb−φp)(1 + s2

r

R
cos(2φb))Θ(R − r), (5.24)

S(x,p) = K1(β(φb))e
α(φb) cos(φb−φp)Θ(1 −

√
y2 − η2x2/Ry). (5.25)

The time dependence of the particle emission is included through a Gaussian distri-

bution exp (−t/(2τ)) to produce an emission time–scale of τ . To remove any dis-

continuities in the momentum boost at r = 0, a gradient r/R is applied to the flow

field

ρ(φ) =
r

R
(ρ0 + ρa cos(2φ)). (5.26)

The s2 parameter from the blast wave fit to the v2 is different from the s′2 used in [2]

and is related to η by [60]

s2 ≈ 1

2

η3 − 1

η3 + 1
. (5.27)
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The φ dependence of the transverse HBT radii are now calculated by combining

(2.16) and (2.33):

〈x〉(φp, pT ) =

∫
r dr dφ dt (r cos(φ)) S(r,p)∫

r dr dφ dt S(r,p)

〈y〉(φp, pT ) =

∫
r dr dφ dt (r sin(φ)) S(r,p)∫

r dr dφ dt S(r,p)

〈x̃2〉(φp, pT ) =

∫
r dr dφ dt (r cos(φ))2 S(r,p)∫

r dr dφ dt S(r,p)
− 〈x〉2 (5.28)

〈ỹ2〉(φp, pT ) =

∫
r dr dφ dt (r sin(φ))2 S(r,p)∫

r dr dφ dt S(r,p)
− 〈y〉2

〈x̃ỹ〉(φp, pT ) =

∫
r dr dφ dt (r cos(φ))(r sin(φ)) S(r,p)∫

r dr dφ dt S(r,p)
− 〈x〉〈y〉

and

R2
o(φp, pT ) = 〈x̃2〉 sin2(φp) + 〈ỹ2〉 cos2(φp) − 〈x̃ỹ〉 sin(2φp)

R2
s(φp, pT ) = 〈x̃2〉 cos2(φp) + 〈ỹ2〉 sin2(φp) + 〈x̃ỹ〉 sin(2φp) (5.29)

R2
os(φp, pT ) = 〈x̃ỹ〉 cos(2φp) +

1

2
(〈ỹ2〉 − 〈x̃2〉) sin(2φp)

The φ dependence of the HBT radii in equation (5.29) are simplified versions of (2.32)

when measuring the 2nd order event plane.

Using (5.28) and (5.29), the φ dependence of the transverse HBT radii were cal-

culated for the two limiting cases of source anisotropy. It was found that while the

presence of an anisotropic flow boost introduces oscillations in the radii, the phases

and magnitudes of the oscillations are dominated by the spatial anisotropy. Figs. 5.15

and 5.16 show comparison plots of the φ dependence of the HBT fit parameters with

various blast wave parameterizations. In Fig. 5.15, the transverse radii are compared

to the blast wave modified with a solid elliptical source characterized by the param-

eters in Table 5.10. The full parameterization is shown as a black line, while the
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separate contributions are shown for the momentum anisotropy (red dashed line) and

the spatial anisotropy (green dotted line). A similar comparison is shown in Fig. 5.16

for a source anisotropy characterized by a density modulation. The results indicate

that to describe both the v2(pT ) measurement and φ dependence of the HBT radii,

the source spatial anisotropy must be dominated by the geometry of the source as

opposed to its density. Assuming a geometry anisotropy in the emission region, an

out–of–plane source extension Ry = 11.7fm is found. An s2 = 0.037, corresponds

to an in–plane extension Rx = 11.1fm. The emission duration was also varied to

achieve good agreement between the relative sizes of R2
o and R2

s. The emission time

obtained from the blast wave parameterization was τ = 2.2fm/c.

The presence of positive ρa alone introduces oscillations in the transverse radii

consistent in phase with those measured, yet the magnitude of the oscillations requires

some additional spatial anisotropy. The oscillations introduced to the transverse

radii from the s2 parameters were found to be dependent upon the character of the

modulation they described. When the modulation was described by an elliptic spatial

extension, the oscillations obtained from a positive s2 agreed in phase and when

properly chosen could describe the φ dependence of the transverse radii alone. If the

source was assumed circular in the transverse plane with a modulated source density,

the oscillations from a positive s2 introduced oscillations opposite those observed in

the data in R2
s and R2

os. The magnitude of the oscillations are also much reduced

from those measured. In particular, the R2
o φ dependence is almost non–existent.

The freeze–out geometry obtained from the blast wave parameterization allows an

estimation of the freeze–out time of the overlap region of the collisions. Weighting the

multiplicity distribution by the approximate number of pairs generated, n(n − 1)/2,
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Figure 5.15: The (histogram bin content) corrected φ dependent HBT fit parameters
with a comparison to the blast wave results using Table 5.10. The full blast wave
calculation is shown as a black line, while the separate contributions are shown as a
red dashed line (ρa = 0.037, s2 = 0) and a green dotted line (ρa = 0, s2 = 0.037).

115



λ

0.4

0.5
)2

 (
fm

2
R

18

20

22

24
Out

18

20

22

24
Side

)
o

 (φ
0 50 100 150 200

)2
 (

fm
2

R

-2

0

2
OutSide

)
o

 (φ
0 50 100 150 200

24

26

28

30

Figure 5.16: Same as Fig. 5.15 but for the density modulated source.
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one can estimate the average impact parameter and aspect ratio, η = Ry/Rx, of the

initial overlap region. For the minimum–bias events used in this analysis, an average

centrality of 18% was found corresponding to an impact parameter of ∼ 4.2fm. The

extensions of the elongated source of the overlap region are related to the impact

parameter via

Rx(b, RAu) = RAu − 1

2
b (5.30)

Ry(b, RAu) =

√
R2

Au −
1

4
b2. (5.31)

The “lengths of homogeneity” are then calculated as

〈x̃2〉 =
2

3

(
A0(R, b, θ) − A1(R, b, θ) + A2(R, b, θ) − A3(R, b, θ)

D(R, b, ψ)

)
(5.32)

〈ỹ2〉 =
2

3
R4

(
B0(R, b, ψ) − B1(R, b, ψ)

D(R, b, ψ)

)
(5.33)

where

A0(R, b, θ) = θ

(
3

8
R4 + 6R2b2

)
,

A1(R, b, θ) = sin(θ)

(
9

2
R3b − 8Rb3

)
,

A2(R, b, θ) = sin(2θ)

(
1

4
R4 + 3R2b2

)
,

A3(R, b, θ) =
1

2
sin(3θ)R3b +

1

32
sin(4θ)R4, (5.34)

B0(R, b, ψ) =
3

16
π − 3

8
ψ,

B1(R, b, ψ) =
1

4
sin(2ψ) +

1

32
sin(4ψ),

D(R, b, ψ) =
π

2
R2 − 2R2

(
ψ

2
+

sin(2ψ)

4

)
,

θ = sin−1

(√
R2 − 4b2

R

)
, and

ψ = sin−1

(
2b

R

)
.
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The overlap region can be approximated by an ellipse with equivalent lengths of

homogeneity. The aspect ratio of the corresponding ellipse is found to be η = 1.31.

The positive elliptic flow present at RHIC increases the in–plane radius faster than

out–of–plane thus reducing the aspect ratio as a function of time, as seen in Fig. 5.17.

Fig. 5.17 shows the εx(t) parameter, where

εx =
〈〈y2 − x2〉〉
〈〈y2 + x2〉〉 , (5.35)

for a hydrodynamic simulation and shows the evolution of the almond shaped overlap

region as a function of time after the collision. The s2 parameters from the blast

wave provide a measurement of the aspect ratio of the freeze–out configuration of the

emission region from (5.27) giving η = 1.05. By including time dependence in the

aspect ratio,

η = η(t) =
Ry(t)

Rx(t)
=

Ry(0) + 〈vy〉t
Rx(0) + 〈vx〉t , (5.36)

the freeze–out time obtained is t = 11.2fm/c. The expansion velocities, vx and vy,

are obtained from the blast wave parameters, ρ0 and ρa from Table 5.10. This time

represents the elapsed time from the impact to the time pion emission ceases and

includes the emission timescale also found from the blast wave, τ = 2.2fm/c. Model

predictions which incorporate a phase transition to a QGP predict a dramatic increase

in the lifetime of the particle source, as seen in Fig. 1.3, followed by a decrease in the

lifetime as the source becomes explosive. The short life–time and large flow velocities

are indicative of an explosive source suggesting that the energy densities created at

RHIC may be well above the threshold for creating QGP and are producing explosive

sources.
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Figure 5.17: Time dependence of the eccentricity parameter for hydrodynamic simu-
lations as SPS and RHIC collision energies.
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Presently, the blast wave has been successful in reproducing a wide variety of

measurements made by STAR within a consistent set of parameters. In addition to

describing the measurements of elliptic flow and the φ dependence of the transverse

HBT radii, the blast wave also can be used to extract parameters to describe the

particle spectra and HBT correlations from non–identical particle pairs. Fits to the

spectra with the blast wave parameterization provide information about the source

temperature T and the radial flow boost ρ0. Results from fitting the STAR particle

spectra indicate a temperature and flow boost consistent with that which describes

both the elliptic flow and R2
o,s,os(φ) [66]. Comparison with dynamical models suggest

a more complex freeze–out process is present at RHIC. Hydrodynamics is successful at

reproducing much of the dynamical properties at RHIC yet fails to predict accurate

HBT radii [67]. Including a less dense model to reproduce the later stages of the

emission region, such as RQMD, increases the difference between model and data [2].

In addition, the inclusion of a hadronic scattering stage increases the lifetime of the

emission region and predicts a change in the average source shape, as seen in Fig. 1.4,

in contrast to what the STAR data describe.
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CHAPTER 6

CONCLUSIONS

The STAR experiment was designed as a large acceptance detector ideally suited

to provide correlations between many observables on an event–by–event basis. By

correlating the measurement of several quantities, a more detailed characterization

of the freeze–out configuration is possible which will further constrain dynamical

models. In the summer of 2000, the collisions provided by the RHIC accelerator

complex created the most dense state of matter for experimentalists to study in a

laboratory by colliding Au nuclei at
√

sNN = 130AGeV .

Further progress with this analysis would be possible with some modifications to

the STAR detector. The addition of FTPC’s should provide the ability to reconstruct

the 1st order event plane thereby giving a full 3–dimensional view of the particle

emitting source. Year 2 data taken in the summer and fall of 2001 are expected to

expand the systematics available for the azimuthally sensitive analysis. The increased

statistics will provide an opportunity to perform the first systematic studies of pion

interferometry relative to the event plane to improve the resolution of the picture of

the fundamental properties of compressed nuclear matter which are being drawn from

STAR data.
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The study of interferometry in heavy ion collisions provides a method to probe

the spatial and dynamic properties of the emission region. Noncentral collisions are

inherently anisotropic in both spatial and momentum space. The analysis of the φ

dependence of the HBT radii provides a wealth of information about the freeze–out

conditions of the emission region. Although both hydrodynamic and molecular dy-

namic models fail to accurately reproduce the magnitudes of the R2
o and R2

s radii,

both correctly predict the phases and magnitudes of the oscillations in the φ depen-

dence of the transverse radii: R2
o, R2

s, and R2
os seen in both the π− and π+ separate

analyses in addition to the combined charged pion analysis. However, the “most

realistic” scenario of hydrodynamics + RQMD get the wrong shape, see Fig. 5.17.

A hydrodynamic inspired blast wave parameterization of the freeze–out configura-

tion was introduced to describe the STAR v2(pT ) measurement. The results of the fit

indicated the presence of a spatial anisotropy, evidenced by a nonzero s2 parameter.

The blast wave was further modified to account for a more realistic solid emission

region. It was found that the data could be reproduced using the same parameters as

the v2 analysis while also including both an emission timescale, τ , and an out–of–plane

radius, Ry. The modified blast wave reproduces the φ dependence of the transverse

HBT radii when the s2 parameter characterized an out–of–plane extended source.

The spatial anisotropy corresponds to a source eccentricity η = Ry/Rx ≈ 1.05. This

may be compared to ∼ 1.3 − 1.4 at the AGS, which was consistent with entrance

channel overlap configuration.

Using an estimate for the geometry of the initial overlap region and the average

freeze–out geometry obtained through the blast wave parameterization, an estimate

for the source life time was found to be t ≈ 11.2fm/c. The similarity of the sizes of R2
o
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and R2
s is also suggestive of a short lived source. Using a blast wave parameterization

of the freeze–out conditions, the φ dependence of the transverse radii indicate a

emission duration, τ ≈ 2.2fm/c. Combined with the strong dynamics found in the

radial and elliptic flow, these results are strong indicators of an explosive source,

possibly well above the threshold for creating a quark–gluon plasma.
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APPENDIX A

RELEVANT VARIABLES

The STAR detector is located at the ∼6 o’clock position, at the southern end of

the RHIC collider ring. The coordinate system is defined to be right–handed with the

+z axis defined by the direction of the clockwise RHIC beam, approximately west.

Positive y is defined to point vertically upwards, and the +x axis is perpedicular to

both and points south. The origin of the coordinate system is located at the center

of the STAR solonoidal magnet [68].

In heavy ion experiments, the standard variables to represent the motion of the

particle is (pT , φ, y) where pT is the transverse momentum of the particle relative to

the beam, φ is the direction of transverse motion, and y is the rapidity. The rapidity

of a particle is a measure of its forward (beam direction) energy and is defined by:

y =
1

2
ln

(E + pz

E − pz

)
. (A.1)

Rapidities are invariant under Lorentz transformations making it easy to shift particle

rapidities to a boosted frame and hence allow comparisons of results of different

experiments. The rapidity can be approximated by the psuedorapidity,

η =
1

2
ln

(1 + cos(θ)

1 − cos(θ)

)
(A.2)
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where θ is the angle between the beam axis and the momentum of the particle. In

the limit of massless particles, y = η. The transverse momentum, pT , of a particle is

defined as the length of the momentum vector perpendicular to the beam axis,

pT =
√

p2
x + p2

y. (A.3)

To measure the energy exiting the collision fireball perpendicular to the beam

axis, one uses the transverse mass,

mT =
√

p2
T + m2. (A.4)

An invariant form of the momentum difference is defined as q–invariant, qinv, and

is the standard variable used in 1–dimensional HBT analyses. It is defined as the

length of the 4–momentum difference between to particles,

qinv =
√

qµqµ =
√
−((∆E)2 − (∆p)2). (A.5)

The s′2 parameter used by Teaney and Shuryak to describe the spatial anisotropy

is a measure of the difference in length of the transverse radii:

s′2 =
〈x2 − y2

x2 + y2

〉
. (A.6)

This can be related to the s2 parameter used in the blast wave model through (5.27)

s′2 ≈
〈

3

√
(1+2s2

1−2s2
)2 − 1

3

√
(1+2s2

1−2s2
)2 + 1

〉
. (A.7)
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